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Elektros ir elektronikos inžinerijos mokslo krypties disertacijos gynimo taryba:
Prof. dr. Arminas RAGAUSKAS (Kauno technologijos universitetas, technologijos
mokslai, elektros ir elektronikos inžinerija, T 001) – pirmininkas;
Prof. dr. Tomas KAZAKEVIČIUS (Lietuvos sveikatos mokslų universitetas, biome-
dicinos mokslai, medicina, M 001);
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INTRODUCTION

Relevance of the research
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. Ac-

cording to 2010 data, in the European Union, there were 8.8 million individuals older
that 55 years with diagnosed AF [1]. Unfortunately, AF prevalence has been rising
due to the aging of the global population [2], and it is expected to increase more than
2-fold by 2060 [1]. AF is related to the increased risk of various comorbidities. For ex-
ample, AF patients have a 5-fold increased risk of stroke, 3-fold increased risk of heart
failure, and 1.5–3.5-fold increased risk of general mortality [3]. AF-related stroke or
heart failure impose a higher mortality rate comparing to either condition alone [4].
AF patients also suffer from an increased number of hospital admissions, i.e., 30% of
AF patients have one and 10% have two or more hospital admissions annually. There-
fore, 16–20% AF patients suffer from depression and more than 60% of AF patients
endure significantly impaired quality of life [3].

AF is a progressive disease often initially manifested by self-terminating parox-
ysmal AF episodes. Since paroxysmal AF episodes are usually brief, rarely occur-
ring, and asymptomatic [2], AF may be diagnosed when AF has already progressed
to a more sustained form. Progression to persistent or permanent AF is associated
with an increased incidence of various comorbidities, hospital admissions, and even
death [3, 5]. It is important to diagnose AF in the initial stage since the success of the
treatment depends on what stage AF is diagnosed at.

Recent advancements in sensor technologies allow long-term continuous patient
monitoring using various wearable devices, e.g., smartwatches. Long-term monitoring
may be useful to understand AF progression at the individual patient level [6]. In addi-
tion, long-term monitoring enables characterization of the paroxysmal AF episode pat-
tern, including the analysis of temporal distribution or clustering of AF episodes [7].
The need for AF episode pattern analysis, complementing the commonly used AF
burden, has been emphasized in recent clinical guidelines [3]. However, so far, lit-
tle is known about the role of AF patterns in AF progression and the development of
complications. It might be, that the AF pattern is related to the risk of thrombus for-
mation. Since the flow velocity in the left atrial appendage decreases during AF [8],
it is assumed that the risk of thrombus formation is higher when episodes are aggre-
gated in time. Therefore, the understanding of AF patterns may have implications on
patient-specific therapy management and the prediction of the health outcome (e.g.,
stroke).

AF patterns can vary considerably [7] with respect to the AF burden, the number
of episodes, the episode duration, and the temporal distribution of episodes. How-
ever, there is still a lack of methods to characterize the AF pattern. Also, in order
to take a further step in AF pattern characterization, it is essential to understand how
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well episode patterns can be captured when using different AF detectors (i.e., rhythm-
based, rhythm- and morphology-based, or deep learning-based). The recent, rapid
progress in AF detector development comes with the challenge of adequately eval-
uating and comparing performance relative to the published detectors. The use of
performance measures should be accompanied by the investigation of the reliability
of AF pattern reconstruction. For example, it is unclear how AF detectors perform
on different AF patterns, i.e., whether detection performance is the same in a pattern
with a few brief episodes and a pattern dominated by long episodes. The currently
available studies on AF detection offer very little insight on how well episode patterns
are captured; therefore, there is a need to investigate the influence of the AF pattern
reconstruction on the pattern characterizing parameters.

Scientific-technological problem and working hypothesis
The current paradigm provides a scientific basis to assume that the temporal

AF episode pattern is associated to the risk of thrombus formation. That is, the risk
may potentially be higher when AF episodes are aggregated in time since the flow
velocity in the left atrial appendage decreases during AF. While information about AF
patterns is lacking, the emerging non-invasive technologies for long-term monitoring
are expected to fill in this gap in knowledge. However, in order to properly tackle
this problem, novel approaches to characterizing the variety of types of patterns are
needed.

Scientific-technological problem: By which means can temporal distribution
of paroxysmal AF episodes be characterized so that to distinguish different pattern
types which are essential to better understanding of pattern relationship with the risk
of thrombus formation?

The working hypothesis: Paroxysmal AF patterns can be characterized in
terms of the AF duration, temporal distribution and clustering of AF episodes by using
distribution-based, model-based, and parameter-based approaches.

Research object
The research is based on the development and investigation of the signal pro-

cessing algorithms for the characterization of temporal AF episode patterns.

The aim of the research
This doctoral thesis aims to develop and investigate algorithms for the charac-

terization of temporal AF episode patterns.

9



The objectives of the research
1. To develop a phenomenological model of generating temporal AF episode pat-

terns.

2. To develop algorithms for the characterization of temporal AF episode patterns.

3. To investigate the influence of AF detector properties on AF pattern character-
izing parameters.

Scientific novelty
In this doctoral thesis, performance evaluation of AF detectors is considered

to shed needed light on the aspects crucial to reliable reconstruction of the AF pat-
tern. The overall strengths and weaknesses of various types of the AF detector (i.e.,
rhythm-based, rhythm- and morphology-based, and deep learning-based) are demon-
strated. Additionally, challenges in AF pattern reconstruction are highlighted, and
recommendations are proposed on how to handle AF data and evaluate AF detection
performance.

Three different approaches to characterize AF patterns have been proposed and
investigated. One of them is based on the statistical distribution analysis which rests
on the assumption that episodes are statistically independent. This assumption may
be questioned since AF episodes tend to cluster. Also, this approach is less suitable
for the characterization of short AF patterns (i.e., day-long) due to the small number
of episodes. Another approach is to use parameters from the AF pattern model which
is based on an alternating, bivariate Hawkes process. The model-based parameters
provide information on AF episode clustering and rhythm dominance (i.e., AF versus
non-AF). The final approach is to use various parameters, i.e., AF burden, aggregation,
and the Gini coefficient. AF burden is a well-known parameter in AF studies, how-
ever, it provides information only about the time spent in AF. Meanwhile, aggregation
provides information on the temporal distribution of AF episodes, and the Gini co-
efficient, a well-known parameter in economics, provides information on the episode
duration inequality. Therefore, a combination of model-based and parameter-based
characterization offers a solution to analyze different types of patterns.

Practical significance

1. The investigation of the performance of AF detectors and the proposed solutions
for characterization of the paroxysmal AF pattern can be used in the following
applications:

(a) The investigation of AF detectors highlights the remaining challenges in
developing AF detectors.
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(b) Recommendations have been proposed on how to handle AF data and
characterize AF detection performance.

(c) The proposed model for generating a temporal AF pattern is capable of
estimating AF pattern characterizing parameters, thus the model can be
useful to characterize AF patterns in terms of the AF episode clustering
and rhythm dominance.

(d) The proposed algorithms to characterize AF patterns can improve the un-
derstanding of arrhythmia progression.

(e) The proposed algorithms to characterize AF patterns can be useful for un-
derstanding the relation between the AF pattern and risk of complications
(e.g., risk of thrombus formation, or ischemic stroke).

(f) The proposed algorithms to characterize AF patterns can be useful for
identifying potential AF triggers.

2. The methods provided in this thesis have been developed in the framework of
the project Methods for long-term unobtrusive monitoring of atrial arrhythmias
in post-stroke patients – AFterStroke funded by the Research Council of Lithua-
nia (S-MIP-17/81), 2017–2019.

3. Currently, the developed methods are being used in the following project Wear-
able technology for personalized identification and management of paroxysmal
atrial fibrillation triggers – TriggersAF funded by the European Regional De-
velopment Fund (01.2.2-LMT-K-718-03-0027) under grant agreement with the
Research Council of Lithuania, 2020–2023.

Approval of the results
The doctoral thesis relies on two main papers published in the international

scientific journals with the impact factor referred in the Clarivate Analytics Web of
Science database, while, in total, the results have been published in seven scientific
papers. The essential results have been presented in three international worldwide
recognized conferences: 45th, 47th, and 48th conferences Computing in Cardiology.

The research was nominated as a semi-finalist at the Rosanna Degani Young
Investigators’ Award competition at the 48th conference Computing in Cardiology
(Brno, Czech Republic, 2021). In 2019, 2020, and 2022, promotion scholarships
for academic research, granted by the Research Council of Lithuania, were received.
In 2018, 2019, and 2021, the awards of the most active PhD student in the field of
Electrical and Electronic Engineering, granted by Kaunas University of Technology,
were received.
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The statements presented for defense

1. Detection performance differs depending on the approach taken to compare the
detector output to annotation and depending on the selected performance mea-
sures. To characterize AF episode patterns, the episode-to-episode comparison
should be used, while performance should be evaluated in terms of the Matthews
correlation coefficient Mcc, rather than accuracy Acc.

2. The reliability of AF pattern reconstruction is affected by the ECG signal prop-
erties (i.e., the ECG morphology, the number of atrial premature beats, the noise
level) as well as the AF pattern properties (i.e., the AF burden, the episode du-
ration). Depending on the structure of the AF detector, the reliability of AF pat-
tern reconstruction differs, i.e., the deep learning-based detector tends to merge
a few consecutive episodes into a single one, while the rhythm-based and the
rhythm- and morphology-based detectors tend to split a single episode into a
cluster.

3. The temporal AF episode pattern can be characterized by using distribution-
based, model-based, and parameter-based approaches. Distribution-based pat-
tern characterization is less suitable for day-long pattern characterization; also
it rests on the assumption that episodes are statistically independent. A combi-
nation of model-based and parameter-based characterization offers a solution to
analyze different types of AF patterns, since it provides complementary infor-
mation about the AF pattern, i.e., model-based parameters account to episode
clustering and rhythm dominance, while parameter-based characterization pro-
vides information about the total time spent in AF, the temporal distribution of
AF episodes, and the AF episode duration.

Structure of doctoral thesis
The doctoral thesis is organized as follows. Section 1 is devoted to the analysis

of the relevant scientific literature with respect to the clinical significance of AF pattern
characterization, the currently available technologies suitable to collect long-term AF
patterns, and the currently existing approaches used for AF pattern characterization.
Section 2 presents different types of AF detectors and three approaches to characterize
the AF pattern, i.e., distribution-based, model-based, and parameter-based. Section 3
describes databases used for investigation as well as performance evaluation. Sec-
tion 4 presents the results obtained from the investigation of AF detectors and the AF
pattern characterization. In the same section, the analysis of AF patterns, the reliabil-
ity of AF pattern reconstruction, and the investigation of the association between the
pattern characterizing parameters and clinical measures are proposed. The doctoral
thesis is finished with general conclusions provided in Sec. 5.
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Parts of Sections 2–4 have been quoted verbatim from the previously published
articles: [9, 10, 11, 12, 13].

The thesis consists of 122 pages, 42 figures, 11 tables, and 142 references.

Work done in collaboration
The proposed model for generating the temporal AF pattern and estimating the

AF pattern characterizing parameters is developed in collaboration with Lund Univer-
sity (Lund, Sweden). For this purpose, three-week (from February 25 to March 16,
2019) internship in Lund University was performed, during which, the concept of the
model was discussed.

The AF detectors used for the investigation were developed by Andrius Petrėnas
(the rhythm-based detector and the rhythm- and morphology-based detector) and An-
drius Sološenko (the deep learning-based detector).
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1. OVERVIEW OF APPROACHES TO CHARACTERIZING ATRIAL FIB-
RILLATION PATTERN

1.1. Atrial fibrillation background

Atrial fibrillation (AF) is diagnosed from the electrocardiogram (ECG) signal. During
AF, the atrial activity becomes irregular and very rapid, i.e., atria may beat at a rate
of 300–600 times per minute. Fortunately, the atrioventricular node blocks impulses
arriving from the atria, thus only a part of the electrical impulses reach the ventri-
cles. Yet, the activation of the ventricles becomes irregular nevertheless, i.e., the time
between two consecutive contractions of ventricles (RR intervals) becomes irregular.
Also, P-waves characterizing the normal atrial activity are replaced by continuous
rapid f-waves. Irregular rhythm, the absence of P-waves, and the presence of f-waves
are the main features used to diagnose AF in the ECG signal (Fig. 1.1). The temporal
distribution of AF episodes is called the AF pattern. For example, the AF pattern may
consist of several episodes aggregated in a short time interval, thereby resulting in an
AF cluster (see Fig. 1.1).

241262 4 8 10 1814 16 20 220
non-AF

AF

Monitoring period, hours

f-wavesf-waves

RR intervals RR intervals RR intervals RR intervals

P-waves P-waves

Figure 1.1. Temporal AF episode pattern with two episode clusters. High level in the AF
pattern indicates AF, while low level indicates non-AF, e.g., sinus rhythm. During AF,
P-waves in ECG signal are replaced by irregular, continuous f-waves, and RR intervals

become irregular

According to the guidelines for the management of patients with AF [3], five
stages of AF can be distinguished depending on the AF episode duration and the ter-
mination of episodes, i.e., whether it is self-terminating or not (see Table 1.1). All
patients with AF diagnosed for the first time are assigned to the stage ‘new onset
AF’. AF is named ‘paroxysmal’ if the AF episode self-terminates spontaneously in
less than 7 days. Paroxysmal AF episodes can last from 30 s to 7 days. Brief AF
episodes ( 30 s) are not currently considered as paroxysmal, although they are gain-
ing increasing interest in studies analyzing the association with an increased risk of
thrombus formation [14, 15]. AF lasting longer than 7 days is classified as persistent
or long-standing persistent. Since, at this stage, AF is non-self-terminating, treatment
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can be applied to recover the sinus rhythm (SR). However, when AF cannot be termi-
nated, it is assigned to permanent AF. A limitation of the currently used clinical AF
classification is that it does not account to the time spent in AF (e.g., AF burden) [3]
and poorly reflects the temporal AF episode pattern.

Table 1.1. Classification of AF based on [3]

AF stages Definition

New onset Occurrence of the first diagnosed AF episode; episode duration or severity of
AF-related symptoms is not important

Paroxysmal AF is recurrent and self-terminates within 7 days
Persistent AF fails to self-terminate within 7 days
Permanent Continuous AF; no further attempts to recover/maintain SR will be undertaken

Usually AF is a progressive disease [16], i.e., a patient with paroxysmal self-
terminating AF episodes may progress to persistent AF with non-self-terminating
episodes within months [17] or years [18, 19]. On the other hand, other patients may
stay in paroxysmal AF for decades or even ‘forever’ [17]. Also, the AF stage may be
reversible, i.e., some patients with persistent AF may revert to paroxysmal AF [20,21].
However, the heterogeneity of the AF behavior and its progression or regression is not
well understood yet [6].

Long-term continuous monitoring using wearable devices has the potential to
change the categorical AF classification in four stages to continuous evaluation ac-
counting to the time spent in AF. This would open new possibilities in AF manage-
ment [22]. There are a few studies trying to improve characterization of paroxysmal
AF episodes. One of the studies proposed the ‘staccato’ (i.e., frequent and short AF
episodes) and the ‘legato’ (i.e., infrequent and long AF episodes) paroxysmal AF sub-
types [23]; however, the exact threshold values for this classification were not pro-
vided. More importantly, the proposed AF subtypes were not analyzed with respect
to clinical characteristics. Another study proposed three subtypes of paroxysmal AF
based on the duration of the longest AF episode during the monitoring period and the
AF burden, i.e., short episodes ( 6 hours) and low AF burden (0–0.5%); intermedi-
ate episodes (6–12 hours) and intermediate burden (0.5–2.5%); long episodes (¡12
hours) and high burden (¡2.5%). However, these cut-off values require validation in
future studies [7]. The limitation of this study is that only the AF burden is analyzed,
while the AF pattern is defined by the number and duration of AF episodes without
analysis of the temporal distribution of AF episodes.

Recently, the 4S-AF scheme was proposed in the guidelines for the management
of patients with AF [3] which has the potential to improve the single-domain AF
classification (the one provided in Table 1.1). The suggested 4S-AF characterization
scheme includes four AF-related domains: stroke risk, symptoms, severity of the AF
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burden, and the substrate severity (Fig 1.2) [3, 24]. Stroke risk is evaluated by using
CHA2DS2-VASc score: 1 point for congestive heart failure, 1 point – hypertension,
2 points – ¥75 years of age, 1 point – diabetes mellitus, 2 points – previous stroke,
1 point – vascular disease, 1 point – age between 64–74 years of age, 1 point – the
gender category (female). The symptom severity is assessed by a physician using the
European Heart Rhythm Association (EHRA) symptom classification system. The
severity of the AF burden is evaluated based on the time spent in AF and the density of
AF episodes per unit of time (e.g., the annual number of episodes). This domain also
includes termination of AF episodes (spontaneously terminating or not), which can
be an indicator of the progression of AF. The substrate for the AF domain evaluates
the complexity of AF pathophysiology. It includes clinical characteristics, such as
age, cardiovascular risk factors (e.g., obesity), comorbidities (e.g., stroke), and atrial
cardiomyopathy (e.g., atrial enlargement). Even that 4S-AF scheme has the potential
to facilitate the management of AF, yet it still needs to be validated [3].

Stroke risk Symptoms Severity of AF burden Substrate

Truly low risk of
stroke (yes/no)

D
es
cr
ip
tio
n

A
ss
es
sm

en
t CHA2DS2-VASc

Asymptomatic
Moderate

Mode of termination
AF duration and density
per unit of time

AF stage (paroxysmal,
persistent, permanent)
AF burden (total time in
AF, the longest episode,
number of episodes, etc.)

Clinical assessment (AF
risk or progression scores)
Imaging information

Comorbidities,
cardiovascular risk factors
Atrial cardiomyopathySevere

EHRA symptom
score

Figure 1.2. The 4S-AF scheme for structured characterization of patient with AF. Illustration
is adapted from [3, 24]

The understanding of AF and its progression is constantly evolving; however,
recommendations for the AF management are still based on AF stages, i.e., parox-
ysmal, persistent, etc. [24]. Since AF patients classified to the same AF stage may
differ in terms of the temporal AF pattern and the AF burden [24], AF management
should be personalized. Also, it is hypothesized that the risk profile of the patient
should be regularly reevaluated, thus making AF management become dynamic [24].
Therefore, it is essential to investigate capabilities to obtain the long-term AF pattern
and to develop algorithms for AF pattern characterization.

1.2. Introduction to atrial fibrillation patterns

Paroxysmal AF has very heterogeneous temporal patterns [7]. For example, the AF
burden is 74%, 24%, and 9% in the AF patterns provided in Fig. 1.3 a)–c), respectively.
The number of episodes and the episode duration differ as well. The episode can last
from a few seconds to several days. Here, it should be noted that the duration of an AF
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episode can be less than 30 s; however, based on the current guidelines, only episodes
longer than 30 s are considered as paroxysmal [2,3]. Finally, the temporal distribution
of AF episodes is different, i.e., episodes can be aggregated in clusters or spread over
time.

Monitoring period T0

Monitoring period T0

Monitoring period T0
non-AF

AF

non-AF

AF

non-AF

AFa)

b)

c)

Figure 1.3. Examples of AF patterns: a) AF pattern with high AF burden (74%) and 36
episodes, duration of the longest episode is ¡9 000 beats; b) AF pattern with low AF burden

(24%) and 82 brief episodes; c) AF pattern with low AF burden (9%) and 8 episodes
spread in time

1.2.1. Medical background on atrial fibrillation pattern

AF is a major predictor of ischemic stroke [4] occurring when thrombus travels in
the bloodstream and blocks an artery in the brain (see Fig. 1.4). During AF, usually,
thrombus are formed inside the left atrial appendage [25]. For example, more than
90% of embolic strokes are caused by thrombus formed in the appendage [26]. Re-
duction of the flow velocity in the left atrial appendage is associated with an increased
risk of thrombus formation in patients with paroxysmal AF [8]. During SR, the flow
pattern of filling and emptying in the left atrial appendage is regular, while, during
AF, the flow pattern becomes ‘sawtooth’ with no identifiable flow waves [8]. Since
the flow velocity decreases as AF progresses to longer episodes, the analysis of the
temporal episode pattern may provide risk information [25]. It is likely that the risk of
thrombus formation is higher when AF episodes are aggregated in time (see Fig. 1.4).
However, this question remains unanswered since limited information is available in
AF pattern analysis.

The hypothesis that the temporal AF pattern may provide relevant information
in AF progression and can be related to various comorbidities may be supported by a
few recent studies [7,24]. In [7], it was found that longer AF episodes and a higher AF
burden were associated with the AF progression within 1-year, also, those patients had
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Figure 1.4. AF relation to risk of thrombus formation, collection of long-term continuous AF
patterns, and clinical relevance of AF pattern analysis and characterization

more severe comorbidities. In addition, the recently proposed 4S-AF scheme suggests
that long and very frequent AF episodes are related to a higher risk comparing to short
and infrequent episodes [24]. Fortunately, long-term continuous monitoring allows to
obtain the temporal AF pattern, and it enables an improved characterization of AF,
which may help to understand the differences in AF progression and the AF pattern
relation to clinical outcomes [7].

1.2.2. Technologies for collection of atrial fibrillation pattern

The gold standard for AF detection is the standard 12-lead ECG or Holter monitor-
ing. However, 12-lead ECG recording is not suitable for AF pattern collection since
recordings last as little as several seconds. Nevertheless, rapid advancement of sen-
sor technologies opens an opportunity to collect long-term AF patterns. For example,
wearable technologies are becoming increasingly popular and convenient to use in
daily living (Fig. 1.5, non-invasive devices). In this section, ECG-based devices as
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well as other modalities for AF screening are discussed according to their suitability
for AF pattern collection. It should be noted that technologies with intermittent mon-
itoring, such as hand-held ECG devices, smartphone camera, etc., are not included in
the analysis since it cannot be used to obtain a continuous long-term AF pattern.

ECG patch

Non-invasive devices Invasive devices

ECG chest strap

Holter monitor

Smartwatch or band

Medical ear buds

Ring

Implantable
device

Insertable cardiac
monitor

Figure 1.5. Non-invasive and invasive technologies for long-term monitoring of AF pattern.
Note, the positioning/placement of electrodes and devices is only for visualization purposes,

thus they may be incorrect

Non-invasive ECG-based devices. The Holter monitor is widely used for ambula-
tory monitoring since it is capable of recording ECG continuously for 1–2 days. Usu-
ally, 3-lead ECGs are acquired. After monitoring, recordings are analyzed offline by
using some dedicated software. That is, there is no indication about rhythm abnormal-
ity during monitoring. Since the Holter monitor provides continuous recording, this
device is suitable for collecting AF patterns and can be considered as the gold standard
(reference). However, adhesive electrodes and connecting wires are uncomfortable for
long-term monitoring (see Fig. 1.5). This is one of the main reasons leading to the ter-
mination of monitoring. Therefore, monitoring by using Holter monitors is limited in
time.

As an alternative to the Holter monitor, there are several smaller devices which
are more patient-friendly [27]. For example, Bittium Faros (Bittium, Finland) can be
used to record single-lead or 3-lead ECG depending on the series of the device. In
addition, the physical activity (accelerometer) and the temperature can be monitored
as well. The device is compact and convenient to wear, and it allows monitoring the
patient for up to 7 days. As in the case of the Holter monitor, there is no embedded
algorithm for rhythm detection. Raw data is saved in an EDF file (the European Data
Format) and can be further processed offline, i.e., to detect AF episodes.
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The ECG patch is an ECG-based modality which is attached to the body directly
without additional connecting wires (see Fig. 1.5). The most popular in cardiovascular
clinical trials [22] is the Zio-Patch (iRhythm Technologies, US) allowing to monitor
continuous single-lead ECG up to 14 days. The accuracy of the Zio-Patch is compa-
rable with the accuracy of the implanted pacemaker [28]. Another example is Body-
Guardian (Preventice Solutions, US) allowing to record continuous single-lead ECG
for up to 24 hours. The data is transferred to the smartphone via Bluetooth. There are
also a lot of other patches suitable to acquire ECG, e.g., Nuvant MCT (Corventis, US),
BardyDx CAM (Bardy Dx, US), BioTel Heart (BioTelemetry, US), MediBioSense MBS
HealthStream (MediBioSense, UK) [22]. All of them have been approved by the U.S.
Food and Drug Administration. ECG patches are suitable for AF pattern collection,
while the monitoring time depends on a specific ECG patch.

ECG patches are attached to the body by using adhesive electrodes, which may
cause skin irritation. As an alternative, ECG chest straps (wearable belts) can be used
instead. For example, Polar Electro OY company (Finland) is offering the Polar heart
rate sensor which can be attached to the body by using chest strap. The battery can last
for 400 hours. This model is more popular during physical activity tracking; however,
it can be used to obtain AF patterns as well.

To conclude, ECG patches can be used for continuous monitoring of the AF
pattern (Table 1.2). However, patient monitoring is limited due to long-term inconve-
nience [22]. Also, none of them has an embedded algorithm for rhythm detection so
far, thus AF episodes should be detected offline by using AF detectors.

Non-invasive PPG-based devices. The modern sensor technology has helped form
a new paradigm of the long-term AF monitoring relying on the analysis of the photo-
plethysmogram (PPG) signal. In the PPG signal, AF is detected based on the irregu-
larity of pulse-to-pulse intervals and PPG morphology [30]. However, AF detection in
the PPG signal can be challenging due to noise and artifacts. Also, PPG application in
AF diagnosis is limited since there are no guidelines on the interpretation of the PPG
signal so far. Therefore, even if AF is already detected by using PPG-based automatic
detectors, additional ECG recording (e.g., a 12-lead ECG, Holter monitoring, etc.) has
to be obtained to confirm the diagnosis.

Smartwatches are becoming increasingly popular in AF studies [22,31]. A com-
parison of the Apple Watch 3 (Apple, USA) and the Fitbit Charge 2 (Fitbit, USA)
showed that these smartwatches are capable to monitor the heart rate during daily liv-
ing (e.g., during sitting, walking, or running). The accuracy of the Apple Watch 3 and
the Fitbit Charge 2 were compared with the gold standard ECG, the mean agreement
was 95% and 91%, respectively [22]. However, the PPG signal from wrist-worn de-
vices during physical activity can be very noisy. In order to ensure accuracy during
physical activity, it is recommended to use chest-strap monitors [22].
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Table 1.2. Comparison of non-invasive and invasive technologies for long-term AF
monitoring and their suitability for AF pattern collection

Device type Accuracy* Suitability for AF pattern collection

Non-invasive ECG-based devices

Holter monitor Reference Can be used to collect patterns lasting 1–2 days
Single-lead ECG
(patches or chest strap)

Sensitivity 94–98%
Specificity 76–95%

Can be used to collect continuous patterns, moni-
toring time depends on specific model (1–2 week)

Non-invasive PPG-based devices

Smartwatch or band Sensitivity 97–99%
Specificity 83–94%

Well-suited for continuous AF pattern monitoring
in patient-friendly way

Medical ear buds Not investigated in AF studies
Ring Not investigated in AF studies

Invasive devices

Insertable cardiac
monitor

Sensitivity 88–95%** Can only be used when it is enough to have infor-
mation about the onset and end of AF episodes

Implantable device Reference for AF
burden

Well-suited for continuous AF pattern monitoring
in a particular patient group

*Accuracy is based on recent guidelines for AF management [3]
** Accuracy is based on [29]

It is important to highlight that some smartwatches have embedded electrodes to
record single-lead short-term ECGs. This novelty is very important for confirmation
purposes, i.e., when the embedded algorithm detects an AF episode in the PPG signal.
A short-term ECG can be recorded by placing a finger on the embedded electrode on
the watch (e.g., on the crown as in Apple Watch), while the back of the watch con-
tacting with the inner part of the wrist serves as the other electrode [22]. Recently, a
wrist-worn device capable of recording continuous PPG and short-term 6-lead ECG
for rhythm confirmation was presented [32]. The ECG can be acquired without ad-
ditional wires or electrodes attached to the body since the device has three embedded
electrodes: one in the inner part and two on the outer part of the device. To record
ECG, one of the electrodes embedded in the outer part of the device should be touched
by the finger, while another one should be held on the left upper abdomen under the
rib cage. In this way, lead I and lead II are recorded, while others (lead III, aVR, aVL,
and aVF) are calculated from the recorded leads. However, only the Apple smartwatch
has the U.S. Food and Drug Administration clearance for its ECG tracking function-
ality [31].

Similar to smartwatches, various wrist or arm bands are also commercially avail-
able and can be used to record the PPG signal. For example, Polar has several se-
ries of smartwatches, and also produces an arm-band (Polar Verity Sense) which is
more convenient to use comparing to smartwatches, especially during physical activ-
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ity. However, Polar devices, especially the arm-band, are commonly used for moni-
toring physical activity. Another example is the Biostrap wearable device (Biostrap,
Los Angeles), i.e., a wristband strap allowing to monitor the PPG signal. It allows
exporting raw or processed PPG, gyroscope, and accelerometer data for further pro-
cessing. However, there is no embedded AF detector. In the official web-page, it is
mentioned that Biostrap was validated and compared with the gold standard, and the
device was used in 22 clinical studies. However, the official web-page do not provide
reference to the publications.

Other modern PPG-based modalities are medical ear buds or rings. For example,
Cosinuss� two (Cosinuss GmbH, Germany) is an in-ear wearable sensor allowing to
obtain continuous PPG and acceleration signals. The device automatically provides
the heart rate, the RR intervals, the signal quality, the body temperature, the blood
oxygen saturation, and the perfusion index. Another modality is the smart earring,
e.g., Joule Earrings (BioSensive Technologies, India) which provides the heart rate
and physical activity information. Lastly, the heart rate as well as the physical activity
and sleep information can be acquired by using rings, e.g., Oura Ring (Oura, Finland).
So far, none of these modalities has been used in AF studies. However, they have
potential to acquire long-term AF patterns in a convenient and unobtrusive way, and
the main question is the signal quality.

To conclude, wearable devices can provide continuous monitoring of patients in
a convenient way (Table 1.2). However, most of the wearable devices activate contin-
uous PPG monitoring only during physical activity. In order to save the battery life,
PPG monitoring during rest or sleep is not continuous, and PPG monitoring occurs
at constant time intervals [22]. In order to obtain the AF pattern, continuous PPG
monitoring should be ensured.

Invasive devices. Long-term monitoring of AF in a convenient way can be ensured
by using invasive devices, such as insertable cardiac monitors or implantable devices
(e.g., pacemakers or cardioverters-defibrillators), see Fig. 1.5. However, it requires
surgical intervention.

Insertable cardiac monitors are small, very thin, light, and wireless devices
which are inserted under the skin in the anterior chest. This type of devices con-
tains two built-in electrodes and is suitable for recording a single-lead ECG. However,
due to its small memory, continuous ECG cannot be saved. The device has a looping
memory, which means that ECG is recorded continuously; however, after 10 min, the
recorded interval is deleted. If the embedded algorithm detects rhythm abnormality
or if the user activates the device, the ECG interval is saved. There are numerous
insertable cardiac monitors or loop recorders; however, only a few are suited for AF
monitoring, e.g., Reveal XT (Medronic, US). The suitability for AF pattern collec-
tion is limited since only the information about the onset and end of AF episodes is
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available. This means that the embedded algorithm should ensure that all episodes are
detected. On the other hand, by increasing the sensitivity, the number of false alarms
increases as well, therefore, AF episodes have to be manually reviewed.

Implanted devices (i.e., pacemakers or cardioverters-defibrillators) are used to
regulate the heart rhythm, however, they can also be used to acquire the AF pattern.
One of the examples of pacemakers can be the devices from the Biotronik company
(Germany). Implanted devices can record the intra-atrial ECG signal which is ob-
tained directly from the heart by using implanted lead in the atria. It provides contin-
uous monitoring of the patient by providing the date and time of an AF episode onset
and the AF episode duration [33]. It should be noted that obtained intra-atrial ECG
differs from the surface ECG, thus it additionally allows analyzing AF episodes with
respect to the atrial rate. Newer technologies of single-ventricular-chamber devices
used for the prevention of the sudden cardiac death feature ventricular leads; there-
fore it allows AF detection based on RR intervals [34]. However, these devices offer
lower AF detection performance comparing to the implanted devices with the atrial
lead [35].

Implanted devices can ensure the long-term monitoring of the AF pattern for a
particular patient group, i.e., the ones who already have the implanted device (e.g., for
bradycardia or sudden death prevention). However, device-detected atrial high-rate
episodes, defined as atrial tachycardias above a predefined atrial rate threshold (e.g.,
190 beats per minute), should be interpreted with caution since it can be assigned to
AF [33]. Therefore, manual annotation is needed to confirm the diagnosis of atrial
tachycardia or AF. Another limitation is that very brief or slow AF episodes can be
missed. Diagnostic accuracy becomes reliable when an AF episode is longer that 5–6
min [33]. However, in this case, brief AF episodes are missed, which are important in
the paroxysmal AF pattern collection.

1.2.3. Performance evaluation of atrial fibrillation detectors

The performance of AF detectors is very important in order to capture AF patterns
properly. The recent interest in deep learning (DL) has led to an avalanche of AF
detectors, e.g., [36]–[52]. As a consequence, the problem of how to evaluate and
compare performance between different detectors, whether based on DL or on expert-
crafted features (e.g., rhythm or morphology features), has been brought into focus.
To outline a framework for evaluation that not only ensures a fair comparison but also
goes beyond reporting the overall performance measures is therefore essential.

While public databases facilitate the comparison of detector performance, con-
clusions should be made with caution for a number of reasons. Rather than using the
entire database, certain detectors have been evaluated on a subset, e.g., by excluding
poor-quality signal segments, or by omitting segments for the purpose of balancing the
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datasets. Also, depending on the approach taken to comparing the detector output to
database annotations, i.e., beat-to-beat [53]–[59], segment-to-segment [51, 57], [60]–
[64], or episode-to-episode comparison [59, 63, 65, 66], the performance can differ
considerably. Although only results computed by using the same approach must be
compared, this is not always the case.

Expression of performance in terms of statistical measures, e.g., sensitivity and
specificity, is common practice. However, the use of performance measures should be
accompanied by results uncovering the detector properties. For example, by investi-
gating what signal scenarios cause frequent false alarms, weaknesses in the detector
design can be addressed more efficiently. Such understanding can be gained by means
of simulated ECG signals which, in contrast to real signals, offer control of the prin-
cipal quantities, such as the type and level of noise, the rate of atrial premature beats
(APBs), and the AF burden [67, 68]. The interest in brief AF episodes ( 30 s) and
their association with the future risk of stroke [14, 15] motivates the simulation of
signals with varying episode lengths to enrich the understanding of performance.

A meaningful comparison of detection performance requires that the datasets
for training and testing should be handled in the same way across studies. Firstly, all
records of the database should be used, meaning that no records should be excluded
due to poor signal quality or as a means to obtain balanced datasets [69]. Secondly,
testing should be done on a database different from the one used for training so that the
performance can be established on unseen data. Thirdly, the same patient should not
appear in both the training and the test datasets. Though not critical to a comparison,
it is highly desirable to provide insight on what particular problem situations cause
the performance to deteriorate, e.g., by presenting examples of motion artefacts and
non-AF arrhythmias.

Tables 1.3 and 1.4 show to what extent DL-based and expert-crafted detectors,
respectively, comply with the above-mentioned requirements; the listed detectors were
all evaluated on the MIT–BIH Atrial Fibrillation Database (AFDB). It is obvious that a
comparison of performance can be highly misleading as data handling differs among
the studies. Only 7 out of 14 (50%) of the DL-based detectors were tested on all
records of AFDB, in comparison to 10 out 13 (77%) of the expert-crafted detectors
under analysis; the records excluded in [48,61,64] were motivated by incorrect anno-
tations. Similarly, as few as 4 (29%) of the DL-based detectors used different patients
in the training and the test sets, whereas 10 (77%) of the expert-crafted detectors did
so. The effect of using different patients in the training and the test sets was illus-
trated by a recent study which reported excellent performance of the proposed DL
model for AF detection (Se � 99.1%, Sp � 98.5%) when the same patient appeared
in both sets [52]; however, when the sets contained different patients, the performance
was mediocre (Se � 90.5%, Sp � 79.7%). Concerning testing on a database other
than that used for training, only 1 DL-based detector (7%) complied with this re-
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Table 1.3. Comparison of DL-based AF detectors

Authors All records
of AFDB

used

Different patients
in training & test

sets

Testing on
other

databases

Plots of
problem
signals

Xia et al., 2018 [50] No No No No
Faust et al., 2018 [49] Yes Yes No No
He et al., 2018 [48] No Yes No No
Andersen et al., 2019 [46] Yes No Yes Yes
Lai et al., 2019 [45] Yes No No No
Dang et al., 2019 [44] Yes No No No
Fujita et al., 2019 [43] No No No No
Wang, 2020 [42] Yes No No No
Jin et al., 2020 [41] No Yes No No
Huang et al., 2020 [40] No No No No
Zhang et al., 2020 [39] Yes No No No
Ghosh et al., 2020 [38] No No No No
Shi et al., 2020 [37] No No No No
Mousavi et al., 2020 [52] Yes Yes No No

Percentage ‘Yes’ 50% 29% 7% 7%

Table 1.4. Comparison of expert-crafted AF detectors

Authors All records
of AFDB

used

Different patients
in training & test

sets

Testing on
other

databases

Plots of
problem
signals

Dash et al., 2009 [64] No Yes Yes Yes
Babaeizadeh et al., 2009 [63] Yes Yes Yes Yes
Lake et al., 2011 [70] Yes Yes Yes Yes
Lian et al., 2011 [62] Yes Yes Yes Yes
Huang et al., 2011 [71] Yes Yes Yes No
Shouldice et al., 2012 [72] Yes Yes Yes No
Carvalho et al., 2012 [73] Yes No No No
Lee et al., 2013 [61] No Yes Yes Yes
Zhou et al., 2014 [74] Yes Yes Yes No
Ródenas et al., 2015 [55] No No No No
Asgari et al., 2015 [60] Yes No No Yes
Petrėnas et al., 2015 [66] Yes Yes Yes Yes
Zhou et al., 2015 [75] Yes Yes Yes No

Percentage ‘Yes’ 77% 77% 77% 54%

quirement, whereas 10 (77%) of the expert-crafted detectors did so. Interestingly,
the performance of that particular DL-based detector was found to drop dramatically
when tested on another database (Se remained unchanged at 99.0% while Sp dropped
from 97.0% to 86.0% [46]), thus offering a possible reason why different training and
test databases have been shunned in the literature. Concerning the plots of problem
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signals, again only 1 study (7%) on DL-based detection provided such information,
whereas 7 (54%) of the studies on expert-crafted detectors.

Lastly, it is important to highlight that the currently available studies on AF
detection offer very little insight on how well the episode patterns are captured. For
example, it is unclear whether an AF pattern with a few brief episodes is reconstructed
as reliably as a pattern dominated by long episodes. Therefore, there is a need to
investigate the reliability of AF pattern reconstruction and the influence of the missed
and falsely detected episodes on the pattern characterizing parameters.

This subsection has been quoted verbatim from the previously published arti-
cle: [9].

1.2.4. Existing approaches to characterizing atrial fibrillation pattern

AF burden, being one of the most popular parameters in AF studies, is defined as the
part of the time the patient spends in AF during the monitoring period (e.g., 1 day) [3].
Numerous studies analyzed the relation between the AF burden and an increased risk
of thrombus formation or stroke (see Table 1.5); also, there is a recently published sys-
tematic review of these studies [76]. Usually, the relation between the AF burden and
the risk of thrombus formation is considered as linear, i.e., larger AF burden values
are related to a higher risk. However, the threshold above which the risk of thrombus
formation increases differs among studies [33]. It is unclear whether the risk of throm-
bus formation is continuous, or maybe a threshold could be defined at which the risk
increases significantly [24]. The guidelines for AF management claim that there is not
enough evidence on the relation between the AF burden and health outcomes (i.e., the
risk of stroke) [3]. However, advancements in wearable devices allow monitoring the
AF burden for a prolonged time, therefore, it might be that this knowledge gap will
get filled in the near future [24].

So far, little is known about the role of temporal AF episode patterns in AF
progression and the development of complications [11,91]. The need for episode pat-
tern analysis, complementing the AF burden, has been emphasized in recent clinical
guidelines, e.g., by determining the density of episodes per unit of time [3, 24]. Fur-
ther investigation of the AF pattern is mandatory since the temporal distribution of AF
episodes may be different even if the AF burden is the same [33]. Also, discordant
results regarding the threshold of the AF burden already presented in Table 1.5 may
suggest that the AF pattern itself is important as well. However, there is a lack of
approaches to evaluate and characterize the AF pattern.

The problem of how to characterize AF episode patterns received certain atten-
tion around the turn of the millennium. At the time, emphasis was put on univari-
ate statistical analysis of either the intervals between consecutive AF episodes (in-
terepisode intervals) [92,93,94], or on the intervals between the onsets of consecutive
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Table 1.5. Comparison of studies analyzing the relationship between AF burden and risk of
stroke

Study AF burden Relation to risk of stroke
MOSTT, 2003 [77] ¥ 5 min episode > 2-fold increased risk of stroke
Capucci et al., 2005 [78] ¥ 24 h episode 3.1-fold increased risk of thrombus formation
Botto et al., 2008 [79] > 5 min episode Increased risk of stroke
TRENDS, 2009 [80] ¥ 5.5 h daily burden 2-fold increased risk of thrombus formation
Ziegler et al., 2010 [81] ¥ 5 min daily burden Increased risk of stroke
Boriani et al., 2011 [82] > 5 min episode Increased risk of stroke
Shanmugam et al., 2012 [83] ¥ 3.8 h daily burden 9-fold increased risk of thrombus formation
ASSERT, 2012 [84] > 6 min episode 2.5-fold increased risk of thrombus formation
SOS AF, 2013 [85] ¥ 1 h daily burden 2-fold increased risk of stroke
IMPACT, 2015 [86] > 5.5 h daily burden 3-fold increased risk of thrombus formation
Turakhia et al., 2015 [87] 5.5 h daily burden 4-fold increased risk of stroke
ASSERT, 2017 [88] > 24 h episode 3.2-fold increased risk of thrombus formation
Kaplan et al., [89] > 6 min episode Increased risk of stroke
Chu et al., 2020 [90] > 6 min episode 6.8-fold increased risk of thrombus formation

AF episodes (inter-detection intervals) [95]. While it was speculated that information
on episode patterns can be useful to predict the outcome [96], e.g., by relating the
degree of episode clustering to antiarrhythmic therapy [93], the clinical significance
was never investigated.

Most of the ‘millennial studies’ were based on the series of RR intervals pro-
duced by the AF detector in an implantable device. This approach offered continuous
operation for a year or more with the potential to characterize the AF progression.
When using a small dataset, the initial results suggested that inter-episode intervals
could be described by a homogenous Poisson model, thus implying that inter-episode
intervals follow an exponential probability density function (PDF) [92]. This PDF
model was, however, later discarded in favor of the Weibull PDF [93,94] or the power
law PDF [95] as the latter two PDFs were found to be more adequate for the model-
ing of inter-episode intervals. The above-mentioned PDF-based approach to charac-
terizing the AF inter-episode or inter-detection intervals rests on the assumption that
episodes are statistically independent – which is an assumption that may be questioned
since AF episodes tend to cluster [93].

An important disadvantage of the PDF-based approach is that it is less effective
for short monitoring periods due to an insufficient number of AF episodes. This re-
striction does not apply to the parameter called ‘AF density’ which depends on the
temporal dispersion of AF episodes over the monitoring period [97,98]. AF density is
one of the very few parameters proposed for characterizing the aggregation of the AF
burden in patients subjected to year-long monitoring using an implantable device [98].
The parameter is defined on the interval r0, 1s where a value close to 0 indicates that
the AF burden is evenly distributed on the day-to-day basis throughout the monitored
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period, and a value close to 1 shows that the AF burden is confined to an interval
much shorter than the monitored period. However, it is still unclear whether different
types of patterns can be distinguished, and the parameter, as well as in the PDF-based
approach, was not investigated in relation to the patient outcome.

Parts of this subsection have been quoted verbatim from the previously pub-
lished articles: [10, 13].

1.3. Conclusions of the chapter

1. AF is classified in five stages, i.e., new onset, paroxysmal, persistent, long-
standing persistent, and permanent. However, the currently used clinical clas-
sification does not correspond to the AF burden and poorly reflects the tempo-
ral AF episode pattern. Long-term continuous monitoring offers potential to
change the categorical AF classification to continuous evaluation. This would
open new possibilities in AF management.

2. During AF, thrombus formation most often occurs in the left atrial appendage.
Reduction of the flow velocity in the left atrial appendage is associated with an
increased risk of thrombus formation. Since the flow velocity decreases as AF
progresses, analysis of the temporal episode pattern may provide risk-related
information.

3. Recent advancements in sensor technologies allow long-term continuous patient
monitoring in a convenient and unobtrusive way by using various wearable de-
vices, e.g., smartwatches, bands, chest straps, medical ear buds, or rings.

4. The currently available studies on AF detection offer very little insight on how
well episode patterns are captured. To take a further step in the AF pattern
characterization, it is essential to fill this knowledge gap by investigating the
reliability of AF pattern reconstruction when using different automatic AF de-
tectors.

5. AF patterns can be widely different with respect to the AF burden, the number
of episodes, the episode duration, and the temporal distribution of episodes.
However, little is known about the role of temporal AF episode patterns in the
AF progression and development of complications.

6. Long-term continuous patient monitoring enables the characterization of parox-
ysmal AF episode patterns, however, there is a lack of approaches aiming to
characterize an AF pattern.

7. There is a need to investigate the influence of missed and falsely detected episodes
on the pattern characterizing parameters.
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2. DETECTION AND CHARACTERIZATION OF PAROXYSMAL ATRIAL
FIBRILLATION PATTERNS

2.1. Atrial fibrillation detectors

Three types of AF detectors can be discerned in the literature, namely, those exploring
the rhythm only, both the rhythm and the morphology, and those using segments of
ECG samples as the input. The first two types are expert-crafted detectors, and they re-
quire prior QRS detection, here accomplished by the wavelet-based detector described
in [99]. Meanwhile, the third type is a deep learning-based (DL-based) detector which
does not require prior QRS detection or feature extraction. In the following subsec-
tions, one representative of each detector type is considered.

Parts of Sec. 2.1 have been quoted verbatim from the previously published arti-
cle: [9].

2.1.1. Rhythm-based detector

Rhythm-based AF detection relies on the observation that AF episodes are manifested
by irregular RR intervals which are often associated with the increased heart rate. The
detector includes blocks for ectopic beat filtering, bigeminal suppression, the char-
acterization of RR interval irregularity, and signal fusion (see Fig. 2.1) [56]. In the
part of ectopic beat filtering, a 3-point median filter is used in order to eliminate ec-
topic beats which can be misclassified as AF when short time RR interval series are
under analysis. The second part of preprocessing is the estimation of the RR trend ac-
complished by using the exponential averager. It is known that the heart rate usually
increases during AF, therefore an estimate of the mean RR interval is used as a feature
in the AF detection. During the AF detection stage, RR irregularity is estimated in
a sliding detection window, and the number of all pairwise RR interval combinations
differing more than the predefined threshold is determined. Also, additional measures
of RR irregularity are used [56] in order to avoid false detections due to bigeminy. At
last, signal fusion is used to produce a detection output (i.e., a value between 0 and 1)
reflecting the likelihood of AF being present in the sliding detection window.

The detector is designed to detect brief AF episodes, and it requires only RR in-
terval series as an input. An important feature is that this detector can be implemented
with just a few arithmetic operations [56]. Therefore, this low complexity detector is
well suited for implementation in wearable devices and can ensure continuous long-
term monitoring.
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Figure 2.1. Block diagram of the rhythm-based detector [56]

2.1.2. Rhythm- and morphology-based detector

The rhythm- and morphology-based detector is designed to detect brief ( 30 s) episo-
des of paroxysmal AF. Four parameters serve as an input to the detector, capable of
detecting AF episodes as short as 8-beats [66]: 1. rhythm irregularity, quantified by
the rhythm-based detector described in Sec. 2.1.1.; 2. P-wave absence, quantified
by computing the normalized ratio of the rectified signal in the PQ interval to that
of the TQ interval; 3. f-wave presence, quantified by the squared and summed error
between different PR intervals; and 4. noise level, quantified by the spectral entropy
ratio-weighted root mean square value of the extracted f-wave signal. The latter three
parameters are determined from an f-wave signal extracted by using an echo state
network [100]. The parameters are fed to a fuzzy logic classifier producing a fuzzy
output, i.e., a value between 0 and 1, reflecting the likelihood of AF being present in
the sliding detection window. The detector requires at least two ECG leads, i.e., one
with negligible atrial activity (e.g., lead V6) and the other containing atrial activity
(e.g., lead V1). The block diagram of the rhythm- and morphology-based detector is
presented in Fig. 2.2.

AF

Figure 2.2. Block diagram of the rhythm- and morphology-based detector [66]
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2.1.3. Deep learning-based detector

The deep learning-based detector described in [9] uses a 1D convolutional neural net-
work to process 30-s non-overlapping ECG segments. The ECG signal is preprocessed
by using a band-pass filter (0.5–40 Hz) to remove baseline wander and high-frequency
noise. The convolutional neural network is composed of two convolutional layers and
one fully connected layer. Both convolutional layers rely on 128 kernels with a stride
of one, followed by a 1� 32 average-pooling layer with a stride of 32. The fully con-
nected layer consists of 256 neurons with a rectified linear unit activation function and
two output neurons with a softmax activation function. To mitigate the risk of overfit-
ting, all layers are followed by dropout layers with probabilities of 0.5. The outputs
of the convolutional layers are batch-normalized. The DL-based detector is trained
by using the gradient-based Adam optimizer [101] with a learning rate of 0.001 and a
batch size of 128. The block diagram of the DL-based detector is presented in Fig. 2.3.

Figure 2.3. Block diagram of the DL-based detector

The detector was trained on two-thirds of the MIT–BIH Atrial Fibrillation Data-
base (AFDB) and validated on the remaining one-third, using the lead with the most
negative S-wave which reasonably well mimics the V1 of the test databases. In order
to increase the number of segments for training, each signal was divided into 30-s
segments with 50% overlap. Poor-quality segments were eliminated based on sample
skewness and kurtosis as proposed in [102]. In total, 358 segments out of 59,185
were eliminated due to poor quality. The resulting training dataset consists of 25,169
segments assigned to AF and 33,658 segments assigned to non-AF. To equalize the
signal amplitude across the recording, the modulus of each segment was taken and
normalized to the interval r0, 1s. The detector was tested on other databases (lead V1),
again divided into 30 s segments but without any overlap.
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2.2. Characterization of atrial fibrillation patterns

A temporal AF episode pattern can be characterized by using three different ap-
proaches. The first approach relies on statistical distribution analysis, and it was used
in several studies performed 20 years ago [92]–[95]. Another approach is to use the
model for generating AF patterns which is capable of estimating the AF pattern char-
acterizing parameters (the model was proposed in [10]), and the third approach is to
use various parameters. All these approaches are described below in detail.

2.2.1. Distribution-based pattern characterization

Distribution-based pattern characterization is based on the fitting of a probability
distribution to a series of data. There are many probability distributions, of which
some can be fitted more closely to the observed data. However, in AF pattern anal-
ysis, usually only normal, lognormal, exponential, and Weibull distributions are ana-
lyzed [93, 94].

In this work, AF episode intervals, inter-episode intervals, and inter-detection
intervals are characterized based on distribution analysis. All these intervals can be
obtained from the AF pattern, see Fig. 2.4. The definition of an AF episode interval
is intuitive; it is the time interval from the onset of an AF episode till the end of
that episode, it can also be called the episode duration. The time interval between
two consecutive AF episodes is the inter-episode interval, whereas the inter-detection
interval is the time interval between the onsets of consecutive AF episodes. It should
be noted that, in previous studies [92]–[95], only inter-episode and inter-detection
intervals were analyzed.

non-AF
0 t₁,₁ t₂,₁ t₁,₂ t₂,₂ t₁,₃ t₂,₃

AF

Episode interval

Inter-detection interval

Inter-episode interval

Figure 2.4. Visual explanation of AF episode interval, inter-episode interval, and
inter-detection interval. Times t1,1, t1,2, t1,3, ... show the onset of AF episodes (transitions
from non-AF to AF), while times t2,1, t2,2, t2,3, ... show the end of episodes (transitions to

non-AF)

In order to characterize an AF pattern, the histograms of AF episode intervals,
inter-episode intervals, and inter-detection intervals are fitted to each of the four dis-
tributions under analysis (Fig. 2.5). The distributions under analysis, parameter esti-
mation, and goodness-of-fit evaluation are described below.
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Figure 2.5. Example of distribution-based characterization of AF pattern. The histograms of
episode intervals, inter-episode intervals, and inter-detection intervals are fitted to each of four

distributions under analysis, i.e., normal, exponential, lognormal, and Weibull distribution.
Bars show histograms, while colored lines show fitted distributions

Description of distributions under analysis. The normal distribution is a contin-
uous probability distribution. The probability density function (PDF) of the normal
distribution has a bell-shape which is symmetric around average µ. The PDF shape is
determined by two parameters, i.e., the average µ and the standard deviation σ:

fpxq � 1

σ
?
2π

e�
1

2
p x�µ

σ
q2 . (2.1)

The average µ shows the location of the normal distribution, while the standard devia-
tion σ shows how wide the distribution is. Figure 2.6 shows the influence of parameter
σ on the PDF, when µ is constant. It should be noted that 68% of the data in the nor-
mal distribution is within µ � σ, 95% of the data is within µ � 2σ, and 99.7% of the
data is within µ� 3σ.

σ₁ < σ₂ < σ₃σ₁

σ₂

σ₃

μ

λ₃ < λ₂ < λ₁
λ₁

λ₂
λ₃

σ₁ < σ₂ < σ₃σ₁

σ₂
σ₃

μ = 0
σ₁ < σ₂ < σ₃σ₁

σ₂
σ₃

μ = 0
k₁ < k₂ < k₃k₁

k₂
k₃

λ = 0

Normal Exponential Lognormal Weibull

Figure 2.6. Examples of four distributions under analysis. Normal distribution is defined by
two parameters (average µ and standard deviation σ), exponential distribution by one (rate λ),
lognormal distribution by two (average µ and standard deviation σ), and Weibull distribution

by two (shape k and scale λ). In each case, parameter influence on the PDF is showed

Exponential distribution is a continuous probability distribution which is used
to model the time points between events in a Poisson point process in which events
occur independently. The PDF shape of the exponential distribution is determined by
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one parameter – rate λ:
fpxq � λe�λx. (2.2)

The rate parameter λ is a scale parameter which indicates the decay of the exponential
function. Figure 2.6 shows the influence of the rate parameter λ on the PDF.

Lognormal distribution is a continuous probability distribution which is related
to the normal distribution. That is, if the variable x is lognormally distributed, then
the logarithm function of x will give the normal distribution. On the contrary, if x is
normally distributed, then the exponential function of x will give the lognormal distri-
bution. The PDF shape of the lognormal distribution is determined by two parameters,
namely, the average µ and the standard deviation σ:

fpxq � 1

xσ
?
2π

e�
pln x�µq2

2σ2 . (2.3)

The average µ is a scale parameter which shrinks or stretches the PDF, while the
standard deviation σ is a shape parameter which affects the overall shape of the PDF.
Figure 2.6 shows the influence of parameter σ on the PDF when µ � 0.

The Weibull distribution is a continuous probability distribution, and its PDF
shape is determined by two parameters, specifically, the shape parameter k and the
scale parameter λ:

fpxq � k

λ

�x
λ

	k�1
e�p

x

λ
qk . (2.4)

The shape parameter k shows the slope of the PDF, whereas the scale parameter λ
has the effect on the distribution regarding the abscissa scale. That is, if the shape
parameter k is constant, increasing the scale parameter λ will stretch out the PDF.
Figure 2.6 shows the influence of the shape parameter k on the PDF when λ � 0.

Estimation of distribution parameters. To sum up, there are four parameters which
can be used to define the distribution: the location parameter indicates where the dis-
tribution lies along the x-axis; the scale parameter determines the spread of the dis-
tribution; the shape parameter allows the distribution to take different shapes, where
the larger parameter values indicate that the distribution tends to be skewed to the left;
and the threshold parameter defines the minimum value of the distribution along the
x-axis. The number of parameters used to define distribution depends on its type, e.g.,
normal and lognormal distributions are described by the location and scale parame-
ters, the Weibull distribution by the shape and scale parameters, while the exponential
distribution is described by only one parameter – the scale.

A number of statistical techniques can be used to estimate the parameters defin-
ing the distribution. The most popular technique is the maximum likelihood estima-
tion, where the likelihood function is defined as [103]:
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L �
n¹

i�1

fpxiq, (2.5)

here fpxiq is the PDF of the particular distribution, e.g., the PDF of the normal dis-
tribution defined in (2.1) Equation. The goal of the maximum likelihood estimation
is to find the values of the parameters describing a distribution that maximizes the
likelihood function L. However, it is easier to minimize the negative log likelihood,
since the negative log likelihood converts the product of PDFs to the sum of PDFs.
Therefore, the negative log of (2.5) Equation is taken:

� lnL � � ln

�
n¹

i�1

fpxiq
�
� �

ņ

i�1

lnpfpxiqq. (2.6)

The next step is to find parameter values minimizing the function defined in
(2.6) Equation. For this purpose, the derivative of � lnL with respect of the specific
distribution parameter x (i.e., can be either the location, scale, shape, or the threshold
parameter) is taken and set equal to 0:

dp� lnLq
dx

� 0. (2.7)

Solving the above described Equation by the specific distribution parameter x gives an
x value which minimizes the log likelihood function. The calculations become more
difficult for distributions defined by a few parameters. The log likelihood function has
to be differentiated with respect to each parameter used to define the distribution.

Goodness-of-fit analysis. When having estimated parameters, the final part is to
determine which distribution fits the data best. A few methods can be used for the
goodness-of-fit analysis: the Anderson-Darling test [104], the Akaike information cri-
terion (AIC), and the Bayesian information criterion (BIC) [105].

The Anderson-Darling test is basically a hypothesis test that determines whether
the data (in this case, AF episode intervals, inter-episode intervals, and inter-detection
intervals) was drawn from a population that follows a hypothesized probability distri-
bution. As in the statistical hypothesis test, the null hypothesis is used, and it claims
that the data follows the hypothesized distribution. Here, the formulation of the null
hypothesis differs from the one used in the statistical theory claiming that there is no
difference among the groups. The result of the Anderson-Darling test is the Anderson-
Darling statistic which is used to calculate the p-value. The small p-value indicates
that the null hypothesis can be rejected, and a conclusion can be made that the data
was not drawn from the hypothesized distribution. Meanwhile, the distribution with
the largest p-value is selected as the best model. In such a case, when the data is not
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well-modeled by any distribution (p   0.05, significance level set to 0.05), such data
is considered as non-belonging to any of these distributions. The Anderson-Darling
test can only be used for normal, exponential, lognormal, and Weibull distributions.

Both the Akaike and the Bayesian information criteria are based on the max-
imum log-likelihood function; therefore, these two methods are closely related and
defined by:

AIC � 2k � lnpLq, (2.8)

BIC � k lnpnq � 2 lnpLq, (2.9)

where k is the number of estimated parameters, L is the maximum value of the log-
likelihood function, and n is the sample size. In both cases, the one distribution with
the minimum value of AIC or BIC is selected as the best fit to the data. The strength
of evidence can be evaluated by determining the difference in values, and if the mini-
mum BIC value differs from others by less than 2, the evidence is poor, and selected
distribution can be rejected; otherwise, if the difference is more than 2, the distribution
can be selected [105]. The same applies for AIC. The AIC and BIC are not useful for
a single distribution, since these methods are not a statistical test like the Anderson-
Darling test. Both AIC and BIC are used to compare the relative quality of several
distributions.

2.2.2. Model-based pattern characterization

Another approach characterizing AF episode patterns is through history-dependent
point process modeling when using an alternating, bivariate Hawkes self-exciting
model. This model and the statistical framework to characterize AF episode patterns
are described in detail in [10] and shortly in this section below. This part of the thesis
was done in collaboration with Lund University (Lund, Sweden).

Parts of Sec. 2.2.2 have been quoted verbatim from the previously published
articles: [10, 12].

Model description. The temporal pattern of AF episodes is modeled by two point
processes: the first one N1ptq accounts for the transitions from non-AF to AF oc-
curring at times t1,1, t1,2, ..., while the second one N2ptq for the transitions from
AF to non-AF occurring at times t2,1, t2,2, .... This bivariate point process is com-
pletely characterized by the two conditional intensity functions λ1ptq and λ2ptq de-
fined by [106]:

λmptq � lim
△tÑ0

PrpNmpt�△tq �Nmptq � 1|Htq
△t

, (2.10)
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where the numerator is the conditional probability of a transition occurring in the in-
terval rt, t�△ts, and Ht is the history of the bivariate point process, i.e., the transition
times t1,1, t2,1, t1,2, ... that have occurred up to but not including t.

When using the bivariate Hawkes model [107], these two counting processes
N1ptq and N2ptq with conditional intensity functions λ1ptq and λ2ptq, respectively,
take the following expression:

λmptq � µm

2̧

n�1

¸
tk:t¡tn,ku

αm,ne
�βm,npt�tn,kq, (2.11)

where µm ¡ 0, αm,n ¥ 0, βm,n ¥ 0 for m,n � 1, 2, and tn,k the occurrence times.
The principal characteristic of the Hawkes model is that each time a new point

arrives, the conditional intensity λ1ptq immediately increases after the transition by
a factor of α1,1 (self-excitation property), and then decreases exponentially (defined
by the decay parameter β1,1) towards the base intensity µ1. The same characteristic
applies to λ2ptq but then defined by α2,2, β2,2, and µ2. Since a transition increases
the probability of getting other points immediately after, this model can be used to
obtain clustered patterns (groups of AF episodes appearing close in time). In addition
to self-excitation, λ1ptq contains another term, defined by α1,2 and β1,2, which lets
N2ptq influence N1ptq (cross-excitation property); λ2ptq is defined in the same way as
λ1ptq, but with parameters α2,1 and β2,1.

A disadvantage of the bivariate Hawkes model in its original form is that it does
not impose alternation between transitions, i.e., a transition from non-AF to AF (the
onset of the episode) is not necessarily followed by a transition from AF to non-AF
(the end of the episode) to ensure that t1,1   t2,1   t1,2   t2,2   ... (see Fig. 2.7 a).
Thus, the bivariate Hawkes model in its original form is not meaningful to use for
simulating AF episode patterns. To overcome this limitation, both λ1ptq and λ2ptq
are multiplied by the corresponding ‘occurrence’ function, thereby ensuring that AF
occurs after non-AF,

o1ptq �
#
1, N1ptq � N2pt� d2q,
0, otherwise,

(2.12)

and non-AF occurs after AF,

o2ptq �
#
1, N2ptq � N1pt� d2q,
0, otherwise,

(2.13)

where d1 and d2 are the minimum duration of AF and non-AF episodes, respectively.
Therefore, the alternating bivariate Hawkes model ensures that a transition from non-
AF to AF (the onset of an AF episode) must, once a certain time d1 has elapsed, be
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followed by a transition from AF to non-AF (the end of an AF episode), and so on (see
Fig. 2.7 b). The choice of d1 and d2 has implications on the number of episodes con-
tained in the AF pattern, i.e., small values of d1 and d2 typically imply more episodes
than do large values. Though d1 may be set according to clinical guidelines (30 s for
paroxysmal AF) [2, 3], the recent interest in brief AF episodes [108, 109] motivates
the use of a small value of d1 and, therefore, it is set to 3 s. Since d2 has not received
much clinical attention, it is set identical to d1.

a)

b)

Time, min

0 10 20 30 40 50 60 70 80

0 10 20 30 40 50 60 70 80

onset onsetsends end

onset end onset end

Transition from non-AF to AF Transition fromAF to non-AF

Figure 2.7. Comparison of a) simulated realization of the bivariate Hawkes point process and
b) realization of the alternating, bivariate Hawkes point process. The marks ‘o’ and ‘�’

indicate transitions from non-AF to AF (onset of AF episode) and from AF to non-AF (end of
AF episode), respectively

Finally, the conditional intensity functions describing the alternating, bivariate
Hawkes process are given by:

Λmptq � λmptqomptq,m � 1, 2. (2.14)

The structure of Λmptq is identical to the bivariate Hawkes process in (2.2), except that
a transition from non-AF to AF must, once a certain time d1 has elapsed, be followed
by a transition from AF to non-AF, and so on. A realization of the alternating, bivariate
Hawkes point process with the associated λ1ptq and λ2ptq is illustrated in Fig. 2.8.

Model parameters. Assuming that β1,1 � β1,2 � β1 and β2,1 � β2,2 � β2 for sim-
plicity, the model is defined by a total of eight parameters (see Table 2.1): µ1, α1,1,
α1,2, β1 describing Λ1ptq and µ2, α2,1, α2,2, β2 describing Λ2ptq. To find the model
parameters from real data, the maximum likelihood estimator is derived and used. It
requires a certain minimum number of AF episodes to obtain reasonably reliable pa-
rameter estimates. In this case, the maximum likelihood estimation can be performed
in ECG recordings with at least 10 episodes, i.e., 20 transitions. To characterize an
AF episode pattern, two main model parameters are selected and described in detail
below.
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Figure 2.8. A realization of the alternating, bivariate Hawkes process: a) temporal AF
episode pattern; b) and c) conditional intensity function λ1ptq and λ2ptq, respectively

Table 2.1. Parameters used in the alternating, bivariate Hawkes model

Parameter Significance

µ1 Base intensity of λ1

µ2 Base intensity of λ2

α1,1 Self-excitation of λ1

α2,2 Self-excitation of λ2

α1,2 Cross-excitation of N2ptq on N1ptq
α2,1 Cross-excitation of N1ptq on N2ptq
β1 Intensity decay rate of λ1

β2 Intensity decay rate of λ2

The parameter β1 may be related to AF episode clustering since a slow expo-
nential decay (i.e., a low value of β1) increases the likelihood that an AF episode is
followed by additional AF episodes. On the contrary, as β1 increases, the decay of
the intensity function towards the base intensity is faster, thus leading to AF episodes
appearing more spread in time.

The base intensities µ1 and µ2 reflect the mean rates of transitions from non-AF
to AF and from AF to non-AF, respectively. The ratio of the base intensities µ1 and
µ2, defined as µ,

µ � µ1

µ2
, (2.15)

indicates the dominance of AF or non-AF states, depending on whether µ ¡ 1 or
µ   1, respectively. Thus, a few long AF episodes occurring closely in time are
characterized by µ ¡ 1, whereas many short, evenly distributed AF episodes are
characterized by µ   1.
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2.2.3. Parameter-based pattern characterization

Parts of Sec. 2.2.3 have been quoted verbatim from the previously published arti-
cle: [13].

Burden. The AF burden is defined as part of the time a patient spends in AF during
the monitoring period (e.g., 1 day):

B � TAF

T
, (2.16)

where TAF is the total time the patient spends in AF, and T is the total monitoring
period. The AF burden takes values between 0 and 1, where 0 means that no AF
was observed during the monitoring period, whereas 1 means that AF takes the whole
monitoring period. It is important to note that the monitoring period should be pro-
vided when reporting an AF burden. Usually AF burden is reported over a 24-h period,
however, the optimal monitoring period is yet to be determined [3]. Also, it should be
noted that the AF burden only provides information about the time spent in AF, and it
does not provide information about the temporal AF behavior.

Aggregation. The temporal AF episode pattern can be characterized by the param-
eter named aggregation A which quantifies the deviation between an observed AF
pattern and a hypothesized uniformly distributed pattern. Its definition is inspired by
the parameter under the name of AF density [97, 98, 110]. AF density was modi-
fied to account for episode duration and to become suitable for the characterization of
day-long recordings on the RR interval basis.

The aggregation A uses the RR interval sequence as its starting point and pro-
vides detailed information of the temporal distribution of AF episodes. The sequence
in, n � 1, ..., NRR indicates whether the n:th RR interval is contained in an AF
episode,

in �
#
1, RRn P AF,

0, otherwise,
(2.17)

where NRR is the total number of the analyzed RR intervals, and NAF �
°NRR

n�1 in is
the total number of RR intervals in AF.

In order to characterize the temporal distribution of AF episodes, the actual a
and the reference uniform u cumulative distributions have to be identified. The actual
a distribution is obtained by moving a sliding window throughout the entire binary se-
quence in (the step size is equal to one RR interval), and finding the maximal number
of RR intervals assigned to AF. The window length is selected from 1 to the maximal
number of RR intervals. When the window length is the same as the length of in, the
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window embraces the entire AF pattern. The uniform u cumulative distribution repre-
sents evenly spread AF episodes throughout the entire monitoring period, and serves
as a reference for finding the difference between the a and u cumulative distributions.

When having the actual a and the reference uniform u cumulative distributions,
the aggregation A is defined by:

A � 2

NRRNAF

NRŖ

n�1

|an � un|. (2.18)

Graphically, A is defined as the ratio between the area that lies between the a and u

cumulative distributions (the dark blue area in Fig. 2.9 b) and the total area above u

(the dark and light blue areas in Fig. 2.9 b). The aggregation A takes values between
0 and 1. Values close to 1 indicate high temporal aggregation which are inherent for
patterns with a single short AF episode or a cluster, while values close to 0 indicate
low aggregation; this applies to AF patterns with episodes evenly spread over the
entire monitoring period or AF patterns with a single episode taking almost entire
monitoring period.
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Figure 2.9. a) Different AF patterns: a single cluster with equal episode duration (left
column), spread episodes (middle column), and multiple clusters with varying episode

duration (right column). Graphical illustration of b) aggregation A and c) Gini coefficient G.
A is obtained by dividing the dark blue area by the total area above the uniform cumulative
distribution u. Similarly, G is obtained by dividing the dark blue area by the total area under

the line of equality e. Note, AF burden is the same for all three patterns (B � 0.5)
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In contrast to the original implementation reported in [97], in which a single
AF episode, shorter than the total monitoring period, is always assigned to a maximal
aggregation, the aggregation A is modified to become duration-dependent. That is, the
aggregation increases when the duration of a continuous AF episode decreases. This
update is motivated by the rationale that there is a major difference between a single
very short episode (e.g., 30 s) and a long one (e.g., 5 h). Therefore, it is incorrect to
assign such diverse AF patterns to the same aggregation value.

Gini coefficient. The AF pattern can also be characterized with respect to AF episode
duration since an AF episode can take from a few seconds to several hours or days.
Differences in the AF episode duration are evaluated by the Gini coefficient which
is commonly used in economics to evaluate the income inequality [111]. The Gini
coefficient G uses the number of AF episodes N as its starting point. To evaluate the
Gini coefficient, the line of equality e and the Lorenz curve L have to be identified.
The line of equality e represents an AF pattern with AF episodes of the same duration,
while the Lorenz L curve represents the cumulative sum of episode durations sorted
in the ascending order.

When having the line of equality e and the Lorenz curve L, the Gini coefficient
G is defined by:

G � 2

NNAF

Ņ

i�1

|ei � Li|. (2.19)

Graphically, G is defined as the ratio between the area that lies between the line of
equality e and the Lorenz curve L (the dark blue area in Fig. 2.9 c), and the total area
under the line of equality e (the dark and light blue areas in Fig. 2.9 c). The Gini
coefficient G takes values from 0 to 1. Values close to 0 are obtained when the Lorenz
curve is similar to the line of equality e. It is inherent for AF patterns with all episodes
of the same duration. Meanwhile, values close to 1 are inherent for AF patterns with
widely different episode durations.

2.3. Conclusions of the chapter

1. Three types of the AF detector, using either information on rhythm, rhythm and
morphology, or ECG segments, have been described. The first two are expert-
crafted detectors, while the third one is a deep learning-based detector. These
detectors will be used to investigate the influence of the ECG signal and AF
pattern properties on the detection performance and to investigate the reliability
of AF pattern reconstruction.
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2. A model for simulating temporal AF episode patterns has been developed which
is based on the alternating, bivariate Hawkes process. The proposed model is
capable of estimating the AF pattern characterizing parameters; thus the model
can also be useful for AF pattern characterization.

3. Three different approaches to characterize AF patterns have been suggested.
The first, distribution-based approach, relies on the fitting of probability dis-
tributions (i.e., normal, exponential, lognormal, and Weibull) to histograms of
episode intervals, inter-episode intervals, and inter-detection intervals. The sec-
ond approach is model-based characterization which uses two parameters from
the model for simulating AF patterns: parameter β1 accounts to episode clus-
tering, and parameter µ accounts for rhythm dominance. Meanwhile, the third
approach includes three parameters which evaluate the time spend in AF, the
temporal distribution of AF episodes, and the differences in AF episode dura-
tions; these parameters are called AF burden B, aggregation A, and Gini coeffi-
cient G, respectively.
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3. ATRIAL FIBRILLATION PATTERN DATABASES AND PERFORMANCE
EVALUATION

Both clinical and simulated signals have been used in this work. Clinical signals were
used to investigate AF detectors (i.e., to compare annotation comparison approaches
and performance measures), the reliability of AF pattern reconstruction, and for the
analysis and characterization of AF patterns. Whereas simulated signals were involved
for the investigation of AF detectors in order to evaluate the influence of the ECG
signal and the AF pattern properties on the detection performance.

3.1. Clinical signals

Three clinical databases containing ECG signals with AF have been used in this work.
Two of them are from publicly available PhysioNet database [112], while the third
one was obtained in collaboration with Lund University (Lund, Sweden). A brief
description of each clinical database is provided below.

PhysioNet database. The MIT–BIH Atrial Fibrillation Database (AFDB) consists of
25 10-h, two-lead ambulatory ECG recordings from patients with AF, mostly parox-
ysmal [112]. Two out of 25 recordings are with a continuous AF episode. In total,
AFDB consists of 297 manually annotated AF episodes which account for 43% of
the total monitoring time. Figure 3.1 a) shows that AF patterns in AFDB are domi-
nated by the small number of AF episodes, the median is 6 episodes. There is only
one AF pattern consisting of more than 80 episodes, while others consist of less than
40 episodes. The duration of AF episodes varies from a few beats to more than 60
thousand of beats, the median is 171 beats (see Fig. 3.2 a).

The Long-Term AF Database (LTAFDB) consists of 84 24-h two-lead ambula-
tory ECG recordings acquired from patients with paroxysmal or persistent AF [112].
Twelve recordings are with continuous AF, and one recording is without AF. In total,
LTAFDB consists of 7329 manually annotated AF episodes which account for 59%
of the total monitoring time. Figure 3.1 b) shows that AF patterns in LTAFDB are
dominated by the small number of AF episodes, the median is 12 episodes. There
are only eight AF patterns consisting of more than 200 episodes. The duration of AF
episodes varies from a few beats to more than 145 thousand of beats, the median is 18
beats (see Fig. 3.2 b).

Saint Petersburg database. The Saint Petersburg Atrial Fibrillation Database
(SPAFDB) consists of 36 three-lead ambulatory recordings lasting from 1 to 7 days
and amounting to a total of 158 days of monitoring [10]. AF episodes were annotated
manually by an expert on AF analysis who consulted other experts in doubtful cases.
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Figure 3.1. Number of AF episodes in a) AFDB, b) LTAFDB, and c) SPAFDB. Note, signals
are sorted in an increasing order of AF episodes
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Figure 3.2. Histograms of AF episode duration in a) AFDB, b) LTAFDB, and c) SPAFDB

In total, the SPAFDB consists of 2370 AF episodes which take 19% of the total moni-
toring time. Figure 3.1 c) shows that AF patterns in SPAFDB are dominated by a larger
number of AF episodes comparing to AFDB and LTAFDB, the median is 30 episodes.
However, there are only two AF patterns consisting of more than 200 episodes. The
duration of AF episodes varies from a few beats to more than 230 thousand of beats,
the median is 47 beats (see Fig. 3.2 c).

Additional clinical information is available for SPAFDB, including the gender,
age, and anthropometric measures together with the atrial echocardiogram test in a
subgroup of 14 patients. For those patients, several atrial echocardiogram measure-
ments, such as the left atrial (LA) volume and the LA strain are available (see Ta-
ble 3.1). This study was approved by the local ethical review board.

3.2. Simulated signals

To investigate the influence of the ECG signal properties (i.e., the ECG morphology,
the number of APBs, and the noise level) and the AF pattern properties (i.e., the AF
burden and the median AF episode length) on the detector performance, simulated

45



Table 3.1. Characteristics of subgroup of patients of SPAFDB with available additional
clinical information including echo-derived measures. Data is presented as mean � standard
deviation and as absolute frequencies (percentages)

Variable Subgroup of patients (n � 14)

Age (years) 62� 4.9
Gender (males) 8p57.1%q
Height (cm) 171� 8
Weight (kg) 82� 12.5
Left atrial volume (ml) 60� 16
Left atrial strain (%) 27.8� 12.3

ECGs with paroxysmal AF are used. The model used for simulating ECGs is de-
scribed in detail in [67] and is shortly presented in the paragraph below.

The model produces 12-lead ECGs composed of real signal components ran-
domly selected from three datasets, each consisting of the ventricular rhythm, atrial
activity (f-waves or P-waves), and QRST complexes. Accounting for the switching
between the sinus rhythm and AF, these components together with noise are added
to produce 12-lead ECGs. Three types of noise (baseline wander, muscle noise, and
electrode movement artifacts) are scaled to the desired root mean square (RMS) value
and added to each lead. The block diagram of the model is shown in Fig. 3.3. A num-
ber of model parameters are set based on the characteristics in AFDB, namely, the AF
burden is set to 0.37, the median episode length to 167 beats, the APB rate to 0.05, and
the noise RMS level to 0.02 mV [67]. The remaining model parameters have default
values [67].

Ventricular
rhythm

QRSTs

QRST
complexes

RR in AF

RR in SR

f-waves

P-waves

Atrial
activity

Rhythm
switching

AF
or
SR

AF

SR
ECG

Noise

Figure 3.3. Block diagram of the model used to simulate 12-lead ECGs with paroxysmal AF

To investigate the influence of ECG signal properties, three different datasets
were simulated. The dataset used for the investigation of ECG morphology contains
100 1-h simulated ECGs in leads I , II , III , V1, V2, and V3. The dataset used for the
investigation of APBs contains 100 1-h simulated ECGs with the APB rate set to 0,
0.1, 0.2, 0.3, 0.4, and 0.5, resulting in a total of 600 ECGs. The dataset used for the
investigation of noise contains 100 1-h simulated ECGs with the noise level set to 0,
0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, resulting in a total of 700 ECGs.
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To investigate the influence of AF pattern properties, two datasets with the me-
dian AF episode lengths of 30 and 167 beats were produced. The first dataset consists
of AF patterns with brief episodes, while the second dataset consists of AF patterns
similar to those in AFDB. Each dataset contains 100 1-h simulated ECGs with the AF
burden set to 0.2, 0.5, and 0.8, resulting in a total of 300 ECGs.

3.3. Database subsets used for investigation

Database subsets used for the investigation of AF detectors (Sec. 4.1), AF pattern
characterization (Sec. 4.2), AF pattern analysis (Sec. 4.3), and clinical association
(Sec. 4.4) are provided in Fig. 3.4 and described in detail below.

Sec. 4.1.1

Sec. 4.1.2

Sec. 4.1.3
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Relation with echo data

Parameter-based

Distribution-based

Performance measures

Figure 3.4. Database subsets used for investigation of AF detectors (Sec. 4.1), AF pattern
characterization (Sec. 4.2), AF pattern analysis (Sec. 4.3), and clinical association (Sec. 4.4)

In Sec. 4.1, the investigation of AF detectors is performed by using both clinical
and simulated signals. Analysis of performance measures is performed by using the
rhythm-based detector on three clinical databases (SPAFDB, AFDB, and LTAFDB),
while the analysis of annotation comparison is performed by using only SPAFDB
since the investigation of all three detector types is provided. The rhythm-based de-
tector requires only one lead, thus all three clinical databases can be used for in-
vestigation, while the rhythm- and morphology-based detector requires at least two
ECG leads (one with negligible atrial activity, and the other containing atrial activity)
which are only available in SPAFDB. To investigate the factors influencing detection
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performance, simulated databases are used since the model for 12-lead ECGs allows
to control different factors (e.g., the APB rate, the noise level, etc.).

In Sec. 4.2, the AF pattern characterizing approaches are investigated by us-
ing only clinical signals. For distribution-based pattern characterization (Sec. 4.2.1),
only 24-h long AF patterns from LTAFDB and SPAFDB are used. Recordings from
SPAFDB lasting a few days are divided to 24-h patterns, and only those starting at
00:00 and ending at 23:59 are taken into consideration. To sum up, there are 84 and
66 24-h patterns in LTAFDB and SPAFDB, respectively. However, distribution fit-
ting requires at least four episodes; therefore, only those patterns consisting of more
than four episodes are analyzed, resulting in total of 78 AF patterns (53 and 25 AF
patterns from LTAFDB and SPAFDB, respectively). Note that for the inter-episode
interval analysis, 80 patterns (53 and 27 AF patterns from LTAFDB and SPAFDB,
respectively) fulfill the requirement of at least four inter-episodes per pattern.

To investigate the model-based and parameter-based pattern characterization
(Secs. 4.2.2 and 4.2.3), SPAFDB, AFDB, and LTAFDB are used. Three types of
AF pattern were manually defined according to the temporal characteristics: a single
episode or a congregation of several episodes in a single cluster, a congregation of
several episodes into multiple clusters, and episodes dispersed over the monitoring
period, resulting in 33, 43, and 54 AF patterns, respectively (Fig. 3.5). Recordings
without episodes (one from LTAFDB) or entirely in AF (two from AFDB and 12 from
LTAFDB) were excluded from the investigation of the AF pattern characterization
since these recordings cannot be assigned to any of the defined AF pattern types.

0 Tnon-AF

AFa)

0 Tnon-AF

AFb)

0 Tnon-AF

AFc)

Monitoring period

Figure 3.5. Illustration of different types of AF patterns: a) single episode or cluster, b)
multiple clusters, and c) episodes dispersed over the monitoring period

In Sec. 4.3, only clinical signals are used. SPAFDB is used for the analysis of
the circadian variation of AF episodes (Sec. 4.3.1). Since only 22 out of 36 record-
ings in SPAFDB have time when AF monitoring starts, only those can be used for the
circadian pattern analysis. However, three recordings of those 22 are two days long;
therefore, there is no continuous day-long pattern, i.e., from 00:00 to 23:59. Thus,
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in total, 66 day-long patterns from 19 patients were analyzed. To investigate the re-
liability of the AF pattern reconstruction (Sec. 4.3.2), all three clinical databases are
used.

In Sec. 4.4, the investigation of the relationship between the AF pattern charac-
terizing parameters and the atrial echocardiographic parameters is performed by using
SPAFDB with the available echo data. Only 14 patients were being made the LA
volume and LA strain measurements. However, to evaluate model-based parameters,
the AF pattern should consist of at least 10 episodes, resulting in 8 patients with the
available LA volume and LA strain measurements.

3.4. Performance evaluation of atrial fibrillation detectors

Ideally, the detector-based pattern should be exactly the same as the reference pattern.
However, misdetected episodes and falsely detected episodes (false alarms) might dis-
tort the pattern as it is shown in Fig. 3.6. In this section, annotation comparison ap-
proaches as well as measures used to evaluate detection performance are presented.

AF
Reference pattern

Detector-based pattern
Misdetection False alarms

Monitoring period

non-AF

AF

non-AF
0 T

0 T

Figure 3.6. Influence of misdetected episodes and false alarms on AF pattern. Note, the
detector-based pattern should be exactly the same as reference

3.4.1. Annotation comparison approaches

The predominant approach to processing annotations is to compare the detector output
(the detector-based pattern) to the annotations (the reference pattern) on the beat-to-
beat basis since each beat is assigned to either AF or non-AF (Fig. 3.7 a). Another
approach is to compare L-beat segments, where L is the number of beats in the segment
(e.g., 8-beat, 64-beat, 128-beat, etc.); in other words, it defines the segment length. A
segment is assigned to AF when at least 50% of the L detected beats are in the AF
(Fig. 3.7 b). The output of the DL-based detector is segment-to-segment which means
that each segment is assigned to ‘AF’ or ‘non-AF’. Yet another approach is to count
the number of the correctly detected AF episodes: an episode is considered correctly
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detected when the overlap between the detector output and the episode annotation
exceeds a predefined threshold, e.g., 50% (Fig. 3.7 c).

In the following text, these three approaches to processing annotations are re-
ferred to as the beat-to-beat, segment-to-segment, and episode-to-episode comparison,
respectively.
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Figure 3.7. Visualization of annotation comparison approaches: a) beat-to-beat,
b) segment-to-segment, and c) episode-to-episode comparison
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3.4.2. Performance evaluation measures

Detection performance is evaluated by determining the number of correctly detected
AF cases (true positive, TP), the number of correctly detected non-AF cases (true
negative, TN), the number of falsely detected AF cases (false positive, FP), and the
number of missed AF cases (false negative, FN). Depending on the annotation com-
parison approach, ‘case’ refers to a beat, a segment, or an episode. From these four
counts, performance measures can be computed.

Sensitivity (Se) is defined by the number of correctly detected AF beats (TP)
divided by the total number of AF beats (the sum of TP and FN), whereas specificity
(Sp) is defined by the number of correctly detected non-AF beats (TN) divided by the
total number of non-AF beats (the sum of TN and FP). Se and Sp take values in the
interval r0, 1s, where 1 shows the perfect performance. Another widely used measure
pair is the positive predictive value (PPV) and the negative predictive value (NPV).
PPV is defined by the number of correctly detected AF beats (TP) divided by the total
number of detected AF beats (the sum of TP and FP), whereas NPV is defined by
the number of correctly detected non-AF beats (TN) divided by the total number of
detected non-AF beats (the sum of TN and FN). PPV and NPV also take values in the
interval r0, 1s, where 1 means that it is 100% true that there is an AF or non-AF if the
result is positive or negative, respectively. It should be noted that the number of beats
can be changed to the number of segments or episodes depending on the annotation
comparison approach.

The overall detection performance can be evaluated by using accuracy (Acc)
which is defined by:

Acc � TP � TN

TP � FN � FP � TN
. (3.1)

Acc takes values in the interval r0, 1s, where 1 means the perfect detection, and 0.5
means random detection. However, the Acc should only be used when both classes (the
duration in AF and non-AF) have approximately the same size; otherwise, Acc can
show overoptimistic inflated results. In imbalanced datasets, the balanced accuracy
(AccB), the F1 score, or the Matthews correlation coefficient (Mcc) may be a better
choice [16, 113, 114]. These measures are defined by:

AccB � 1

2
pSe� Spq, (3.2)

F1 � 2 � TP
2 � TP � FP � FN

, (3.3)

Mcc � TP � TN � FP � FNa
pTP � FP qpTP � FNqpTN � FP qpTN � FNq . (3.4)
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AccB and F1 both take values in the interval r0, 1s, where 1 means the perfect detec-
tion, and 0.5 means random detection. In its original definition, Mcc takes values in
the interval r�1, 1s; however, to facilitate a comparison, Mcc is normalized to take
values in the interval r0, 1s [113].

3.5. Conclusions of the chapter

1. Three clinical databases with ECG signals containing paroxysmal AF episodes
were selected for the analysis of AF patterns and its characterization. However,
real clinical signals do not allow investigating specific AF detector properties;
therefore simulated ECG signals with paroxysmal AF episodes were used as
well. The selected model allows controlling the essential properties of the sim-
ulated signals, i.e., the median AF episode length, the AF burden, the number
of atrial premature beats, and the noise level.

2. Since no consensus has been established on what annotation comparison ap-
proach and performance measures should be used to report on detection perfor-
mance, an important aim is to facilitate such a consensus by highlighting the
differences in the annotation comparison approaches and various properties of
performance measures commonly used in the literature.
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4. RESULTS

4.1. Investigation of atrial fibrillation detectors

4.1.1. Analysis of performance measures

Figure 4.1 a) shows an annotated AF pattern from SPAFDB which is composed of just
a few AF episodes, together with the output of the rhythm-based detector composed
of numerous false detections making up for 2% of the total number of beats. By
using beat-to-beat comparison, the receiver operating characteristic (ROC) shown in
Fig. 4.1 b) suggests near-perfect performance. However, due to the huge imbalance
between non-AF and AF beats (96.7% of beats are non-AF), such a conclusion is
misleading. Since 98.1% of the AF beats and 98.0% of the non-AF beats are correctly
detected, the false AF detections have negligible influence on the ROC. In terms of
performance measures, Acc and AccB are insensitive to data imbalance and therefore
indicate high performance (98.0%), whereas F1 and Mcc are sensitive and therefore
indicate lower performance (76.4% and 88.7%, respectively), see Fig. 4.1 a). Also,
PPV suggests that it is only 62.6% true that there is an AF if the result is positive,
while NPV suggests that it is 99.9% true that there is no AF if the result is negative.
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Figure 4.1. a) Annotated AF pattern from SPAFDB (the upper panel), output of the
rhythm-based detector (the lower panel), and b) corresponding ROC. Performance measures

are calculated by using the beat-to-beat comparison. The annotated pattern consists of 8
episodes with a median episode length of 113 beats, while the detector-produced pattern

consists of 518 episodes with a median episode length of 15 beats

In order to shed further light on data imbalance, the performance of the rhythm-
based detector is studied on 103 recordings from SPAFDB, AFDB, and LTAFDB; 40
recordings with AF burden   0.01 and ¡ 0.99 were excluded. Figure 4.2 shows that
imbalance has only a minor effect on Acc, AccB , F1, and Mcc when the AF burden
is between 0.1 (negative imbalance) to 0.8 (positive imbalance). Interestingly, only
F1 and Mcc are influenced by a negative imbalance of 0.01–0.1, while Acc and AccB
remain essentially unchanged. Since the sectors 0.8–0.9 and 0.9–0.99 contain very
few values, no meaningful observations can be made.
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Figure 4.2. The effect of data imbalance, expressed as AF burden, on different performance
measures. The arc of the circle indicates AF burden. The dots in each colored sector show the

values of a performance measure obtained for different AF patterns by using the
rhythm-based detector and the beat-to-beat comparison. The radius of the colored sector

represents the median of the values of a performance measure. The results are obtained by
using SPAFDB, AFDB, and LTAFDB

The information carried by the different performance measures is investigated
by correlation analysis, again by using the rhythm-based detector and the beat-to-beat
comparison on 103 recordings. Figure 4.3 shows that Sp, NPV, AccB , and Mcc are
strongly correlated (r ¡ 0.8) with each other, while PPV and F1 do not correlate with
Sp, NPV, AccB , or Mcc. The measure PPV correlates strongly with F1 since both
are determined by the number of false positives. On the other hand, Sp and NPV are
strongly correlated due to the fact that missed AF beats are uncommon in rhythm-
based AF detection, thus reducing NPV.

Discussion. Since AF detection represents a binary problem, it is intimately associ-
ated with the 2 � 2 confusion matrix defined by the counts TP, FN, TN, and FP, cf.
Sec. 3.4.2. Combinations of these four counts have been used to define performance
measures, with Se, Sp, PPV, and NPV as the most popular [56, 63, 71, 115]. None of
these measures can, however, be considered fully informative as their respective defi-
nitions involve only two counts of the confusion matrix [113]. The joint use of all four
measures provides richer information on performance, but also renders a comparison
of performance more complicated. Therefore, it is understandable that the use of a sin-
gle overall performance measure, e.g., Acc, F1, Mcc, has become popular [116, 117].
However, a single overall performance measure hides important properties. It is well-
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Figure 4.3. Pearson correlation coefficient for different performance measures, obtained by
using the rhythm-based detector and beat-to-beat comparison. The results are obtained by

using SPAFDB, AFDB, and LTAFDB

known that Acc, being a popular measure in AF detection, tends to inflate performance
for imbalanced datasets [113, 118, 119], cf. Fig. 4.2. By comparing F1 with Mcc, it
should be highlighted that Mcc depends on the number of samples correctly classi-
fied as true negatives, while F1 does not. Since Mcc indicates good performance only
when most AF episodes and most non-AF ‘episode’ are correctly detected, it is rec-
ommended to use Mcc instead of F1 or Acc when evaluating the overall performance.

The area under the ROC, known as the area-under-the-curve (AUC), is another
single overall performance measure popular in many studies, e.g., [47, 56, 57, 60, 74,
120]. Unfortunately, the AUC results from integrating Se and Sp not only in the re-
gions of operational interest, but also in regions of no clinical interest [113, 121, 122].
Hence, it is recommended to disregard AUC when reporting on performance, while
it may be used to provide better understanding of how different parameter settings
influence performance [56, 60, 74].

Expression of performance in terms of statistical measures (e.g., Se, Sp, etc.) is
common practice. However, the use of performance measures should be accompanied
by the results uncovering detector properties. For example, by investigating what
signal scenarios cause frequent false alarms, weaknesses in the detector design can be
more efficiently addressed. Such understanding can be gained by means of simulated
ECG signals which, in contrast to real signals, offer control of the principal quantities
such as the type and level of noise, the rate of APBs, the AF burden, etc. [67, 68].
The interest in brief AF episodes ( 30 s) and their association with the future risk
of stroke [14, 15] motivates the simulation of signals with varying episode lengths to
enrich the understanding of detection performance.

55



4.1.2. Analysis of annotation comparison approaches

Figure 4.4 shows how the type of comparison, i.e., beat-to-beat, episode-to-episode,
and segment-to-segment, influences detection performance. The results are obtained
by using only SPAFDB since all three detectors are included in the analysis. For the
rhythm-based and the rhythm- and morphology-based detectors, episode-to-episode
comparison indicates much lower performance for all measures than do the other two
types of comparison. However, for the rhythm- and morphology-based detector, the
difference in performance is less pronounced which can be explained by the compari-
son taken to the detector design. While the segment-to-segment comparison indicates
the best performance, the difference relative to the beat-to-beat comparison is negligi-
ble.
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Figure 4.4. Detector performance using episode-to-episode (50% overlap), beat-to-beat, and
segment-to-segment (30 s) annotation comparison. Note that only segment-to-segment

comparison can be used to describe the performance of the DL-based detector, since the
detector structure does not lend itself to the other two types of comparison. The results are

obtained by using SPAFDB

Figure 4.5 shows how the segment length influences performance when using
segment-to-segment comparison. As expected, performance deteriorates as the length
shortens; due to that, shorter manifestations of noise and sporadic ectopic beats cause
more false detections.

Figure 4.6 shows how the overlap percentage between the detected and anno-
tated episodes influences performance when using episode-to-episode comparison. As
expected, Se and NPV decrease and Sp and PPV increase as the overlap percentage in-
creases since fewer episodes are detected. However, the intersection point between the
Se/NPV and Sp/PPV curves differs considerably for the two types of detector, with the
value being 15% for the rhythm-based and 48% for the rhythm- and morphology-
based detectors. The latter detector was developed with reference to episode-to-
episode comparison with 50% overlap, thus explaining the 48% intersection point.
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Figure 4.5. Influence of segment length on detector performance by using
segment-to-segment comparison. Note, the DL-based detector is not included since it was

trained to process 30-s segments. The results are obtained by using SPAFDB

These intersection points are also related to changes in the overall performance mea-
sures (i.e., Acc, AccB , F1, and Mcc) which have the inverted U-shape depending on
the episode overlap.
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Figure 4.6. Influence of episode overlap on detector performance by using
episode-to-episode comparison. The results are obtained by using SPAFDB. Note, results

from Acc and AccB differ only slightly; therefore, Acc is covered by the AccB line

Discussion. Depending on the approach taken to comparing the detector output to
database annotations, i.e., beat-to-beat [53]–[59], segment-to-segment [51, 57], [60]–
[64], or episode-to-episode comparison [59,63,65,66], the performance can differ con-
siderably as it was shown in this study. The results show that performance depends on
the selected type, notably, that episode-to-episode comparison indicates much poorer
performance than do the other two types of comparison (Fig. 4.4). Even when the
same type is used, the segment length (Fig. 4.5) and the episode overlap (Fig. 4.6) in-
fluence performance, e.g., it is shown to be increasingly poorer when shorter segments
are used. Therefore, a meaningful comparison can only be made when these aspects
are taken into consideration. If not, conclusions on detector superiority, which tend to
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be common in the literature, cannot and should not be drawn.
Another aspect which deserves consideration is that neither beat-to-beat nor

segment-to-segment comparison indicates the number of the detected AF episodes.
Obviously, the episode-to-episode comparison is more appropriate to use, especially
when temporal paroxysmal AF patterns are the subject of analysis; however, this ap-
proach is rarely used. A likely reason is that the episode-to-episode approach re-
sults in lower performance figures (Fig. 4.4). For DL-based detectors, segment-to-
segment comparison is the preferred choice since deep neural networks typically do
not rely on heartbeat timing; the segment length is usually related to what is deemed
the shortest detectable episode. DL-based detectors requiring heartbeat timing in-
clude [46, 52, 123].

4.1.3. Investigation of detection influencing factors

Since simulated AF patterns used for the investigation of detection influencing fac-
tors are balanced (the AF burden set to 0.37), the detection performance in Figs. 4.7,
4.8, 4.9, and 4.10 is evaluated in terms of accuracy.

Lead selection. Detection accuracy as a function of the processed ECG lead is pre-
sented in Fig. 4.7. The performance of the DL-based detector depends heavily on the
lead, with the best performance obtained for lead V1 (i.e., the one used for training),
then dropping dramatically for the other leads with a lower f-wave amplitude. The
performance of the expert-crafted detectors (i.e., the rhythm-based and the rhythm-
and morphology-based detector) is largely independent of the selected lead. The lead
dependence of the rhythm-based detector is due to the fact that the performance of the
QRS detector is lead-dependent.

APB rate. Detection accuracy as a function of the APB rate is presented in Fig. 4.8.
The performance of the rhythm-based and the DL-based detectors drops rapidly as the
APB rate increases, whereas the rhythm- and morphology-based detector performs
well even at high APB rates thanks to the inclusion of morphological information. For
the rhythm-based detector, the drop in performance is expected as this type of detector
is known to poorly discriminate AF from irregular rhythms with APBs.

Noise level. Detection accuracy as a function of the noise level is presented in Fig. 4.9.
The performance of the rhythm-based and the rhythm- and morphology-based detec-
tors drops rapidly when the noise level exceeds 0.15 mV, which is largely attributed
to the drop in performance of the QRS detector. Although less dependent on the noise
level, the DL-based detector performs considerably worse at the lower noise levels
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(Acc) as a function of APB rate. The results are based on 100 simulated 1-h ECGs and

presented as mean � CI (95%)

than the other two detectors. It should be emphasized that the performance of the DL-
based detector does not depend on the QRS detection performance since it does not
require prior QRS detection.

AF pattern properties. Detection performance as a function of the AF burden is
presented in Fig. 4.10. For a high AF burden (0.8), Se increases only slightly in-
dependently to the detector used; however, Sp is considerably influenced by the AF
burden (see Fig. 4.10 b). That is, Sp drops from 99.5% to 93.3% for a high AF burden
(0.8) compared to a low (0.2) when using the rhythm- and morphology-based detec-
tor, from 99.0% to 90.6% for the rhythm-based detector, and from 88.1% to 70.7%
for the DL-based detector when the median AF episode length is set to 167 beats.
The influence of the AF burden on Sp becomes even more evident for AF patterns
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difference in detection performance depending on the median AF episode length

with brief episodes, i.e., Sp drops from 98.0% to 70.0% when using the rhythm- and
morphology-based detector, from 97.2% to 61.7% for the rhythm-based detector, and
from 82.7% to 31.7% for the DL-based detector.

The detection accuracy decreases only slightly for a high AF burden compared
to a low AF burden when using the rhythm- and morphology-based detector, while
Acc of the rhythm-based detector is more influenced by the change in the AF burden
(Fig. 4.10 c). On the contrary, Acc of the DL-based detector increases from 89.2% to
91.2% for a high AF burden when the median AF episode length is set to 167 beats.

The performance of all detector types decreases when AF patterns with brief
episodes are processed (Fig. 4.10). For a low AF burden, the detection Sp drops only
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slightly. However, Se decreases from 90.9% to 78.7% for patterns with brief episodes
when using the rhythm- and morphology-based detector, from 81.2% to 66.1% for the
rhythm-based detector, and from 93.0% to 83.7% for the DL-based detector. While
for a high AF burden, Sp is substantially influenced by the change in the median
episode length, i.e., Sp decreases from 93.3% to 70.0% when using the rhythm- and
morphology-based detector, from 90.6% to 61.7% for the rhythm-based detector, and
from 70.7% to 31.7% for the DL-based detector.

Discussion. The influence of various physiological and technical factors as well as
AF pattern properties on the detection performance is rarely investigated in the liter-
ature despite the fact that such an investigation can provide essential information on
the detector properties. For example, those situations in which detection performance
degrades may receive particular attention.

Since the performance of the DL-based detector depends heavily on the lead
selected for processing (Fig. 4.7), the datasets used for training and testing should
consist of recordings from the same lead to achieve the best performance. In the
present study, lead V1 was used since its f-waves are more prominent than in any of the
other leads of the standard 12-lead ECG. When using different databases for training
and testing, it is not only important to use a similar lead, but also to avoid differences in
measurement equipment and a large variation in the signal quality. These observations
are the probable reasons why nearly all DL-based detectors in the literature have been
tested by using cross-validation on the training database, see Sec. 1.2.3, Table 1.4. As
for the two expert-crafted detectors, their performance is not nearly as sensitive to lead
selection (Fig. 4.7).

Since P- and f-wave information is part of the decision process, the performance
of the rhythm- and morphology-based detector remains largely unchanged for an in-
creasing APB rate [66], cf. Fig. 4.8. On the other hand, as expected, the performance
of the rhythm-based detector deteriorates considerably since decisions are based on
RR interval information. More surprising is that the performance of the DL-based de-
tector also deteriorates considerably. This behavior can likely be explained by a train-
ing process that identifies rhythm irregularity as a prominent AF feature; however, a
representative training database with a greater variety of cardiac rhythms than that of
AFDB should help improving the performance [30]. In addition to investigating the
performance as a function of the APB rate, other AF-masquerading arrhythmias, e.g.,
bigeminy, trigeminy, atrial tachycardia, and atrial flutter, deserve to be investigated as
well.

The influence of missed and falsely detected QRS complexes on the AF detector
performance is rarely reported in the literature. In many studies, QRS detection is as-
sumed to be perfect simply because the database annotations on QRS occurrence times
serve as the starting point for AF detection [62, 64, 70, 71, 74]. However, in practice,
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ECGs are often noisy, e.g., when recorded under ambulatory conditions, and, there-
fore, QRS detection is far from perfect. As evidenced by Fig. 4.9, the performance of
the expert-crafted AF detectors deteriorates at higher noise levels because of the de-
teriorating QRS detector performance. In addition, for the rhythm- and morphology-
based detectors, the noise enters through P- and f-wave features, thus calling for their
careful use at higher noise levels.

The AF detector performance as a function of different AF episode lengths de-
serves attention since the performance will deteriorate as the length becomes increas-
ingly shorter. For example, when the median episode length of simulated signals
decreased from 120 to 30 beats, the accuracy of the rhythm-based and the rhythm-
and morphology-based detectors decreased from 84% to 65% and from 92% to 80%,
respectively [67]. This is in agreement with the results shown in Fig. 4.10, where not
only the influence of the median episode length is presented, but also the influence of
the AF burden.

The sensitivity of the DL-based detector is less influenced by the AF pattern
properties than are the other detector types. However, the specificity of the DL-based
detector decreases considerably when processing AF patterns with brief episodes. The
reason behind is that the DL-based detector uses quite long 30-s segments, therefore,
it is still going to detect AF if, e.g., only a half of that segment contains AF. Another
reason is the comparison of different AF detection approaches, where one is based on
the analysis on ECG segments, while the two others process ECG on the beat-to-beat
basis.

As it is shown in this study, the AF pattern properties, such as the median
AF episode length and the AF burden, also have influence on the detection perfor-
mance. This may be a challenge aiming at the characterization of temporal AF pat-
terns, e.g., the analysis of episode clustering [10], or the temporal distribution of AF
episodes [13]. Therefore, it is important to understand the reliability of the AF pat-
tern reconstruction by using automatic AF detectors. For this purpose, investigation
of the influence of the missed and falsely detected AF episodes in terms of the pattern
characterizing parameters is essential.

4.1.4. Comparison of detector performance

A summary of the strengths and weaknesses of rhythm-based, rhythm- and morphology-
based, and DL-based detectors is presented in Table 4.1.

Limitations. One detector representative for each of the three main types found in
the scientific literature, i.e., rhythm-based, rhythm- and morphology-based, and DL-
based, have been studied. Another type of detectors is the one relying solely on atrial
information; however, this type was not considered as it is known to perform poorly
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Table 4.1. Strengths and weaknesses of rhythm-based, rhythm- and morphology-based, and
DL-based detectors

Detector type Strengths Weaknesses

Rhythm- Low computational demands Depends on QRS detection performance
based Well-suited for implementation in wear-

able devices
Difficult to distinguish AF from other ir-
regular rhythms

Rhythm- and
morphology-

Well-suited for distinguishing AF from
other irregular rhythms

P- and f-wave features are sensitive to
noise

based Depends on QRS detection performance

DL-based No need for expert-crafted features Sensitive to changes in ECG morphology
No need for QRS detection Unclear how the detector generalizes on

unseen data
Performance can be improved using
training dataset with non-AF arrhythmias

Detection is data-driven and thus lacks
interpretability
Complex networks are computationally
demanding

in noisy signals [16]. While other representatives could have been chosen, the aim
of this work is to identify structure-dependent aspects on performance evaluation, but
not to grade the performance of different detectors, therefore making the choice of
representatives less critical.

In certain applications, e.g., wearable devices, the computational complexity
needs to be considered when evaluating the performance. Since complexity is detector-
specific, such considerations have been left out of the present study. Nonetheless, the
structure of a rhythm-based detector is typically less complex than that of a DL-based.
For example, the rhythm-based detector in [56] requires 8 multiplications per RR in-
terval, whereas the DL-based detector in [46], with its 159,841 trainable parameters,
evidently requires many more multiplications as well as dramatically more memory.

The DL-based detector was trained on ECG segments whose quality was deter-
mined from sample skewness and kurtosis [102]. Recently, other approaches towards
quality assessment have been proposed to be designed specifically for use in AF detec-
tion [124]–[127]. These approaches may lead to better training results, and, ultimately,
better performance.

The modern sensor technology has helped form a new paradigm of long-term
AF monitoring relying on the analysis of PPG signals. As a result, a large number
of PPG-based AF detectors have been published, e.g., [30, 54, 58, 65], [128]–[133].
While PPG-based detection was not addressed in this work, the considerations made
on the performance evaluation of ECG-based detectors apply to PPG-based detectors
as well.
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Recommendations. From the implications of the results presented in Sec. 4.1 as
well as from reviewing a large number of recent, peer-reviewed papers (cf. Sec. 1.2.3,
Tables 1.3 and 1.4), the present work leads up to the following five recommendations
on evaluating detector performance:

1. To use different datasets for training and testing, and to ensure that the two
datasets do not contain signals from the same patient.

2. To substantiate the approach taken to annotation comparison, and, if applicable,
to report the segment length and episode overlap.

3. To evaluate performance in terms of Mcc, rather than Acc or F1, and to include
Se, Sp, and PPV so as to facilitate a comparison of the many published detectors;
AUC should be left out when reporting performance.

4. To evaluate the influence of the physiological and technical factors on perfor-
mance, including lead selection, APB rate, noise level, and AF-masquerading
arrhythmias.

5. To pay special attention to detection performance when the aim is to character-
ize AF episode patterns.

Parts of Sec. 4.1 have been quoted verbatim from the previously published arti-
cles: [9, 11].

4.2. Characterization of atrial fibrillation patterns

4.2.1. Distribution-based pattern characterization

Episode intervals. The goodness-of-fit of episode intervals is provided in Table 4.2.
The results obtained by using AIC and BIC are the same except for the two patterns
assigned to exponential distribution based on BIC. By using these methods, most of
the cases are assigned to lognormal distribution, i.e., 54 out of 78 patterns (69%). AIC
and BIC rejected 22 (28%) and 20 (26%) patterns, respectively, while the Anderson-
Darling test rejected 40 (51%) patterns. Coincidence cases among these three methods
used for the evaluation of goodness-of-fit are distributed as follows: 10 (13%) patterns
are fitted to lognormal distribution, and 1 (1%) to Weibull distribution.

Inter-episode intervals. The goodness-of-fit of inter-episode intervals is provided
in Table 4.2. The results obtained by using AIC and BIC are the same: 63 (79%) pat-
terns are assigned to lognormal distribution, and 1 (1%) pattern is assigned to Weibull
distribution. AIC and BIC rejected 16 (20%) patterns out of 80, while the Anderson-
Darling test rejected 53 (66%) patterns. Coincidence cases among these three methods
used for the evaluation of goodness-of-fit are distributed as follows: 18 patterns are
fitted to lognormal distribution.
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Inter-detection intervals. The goodness-of-fit of inter-detection intervals is pro-
vided in Table 4.2. The results obtained by using AIC and BIC are the same, i.e.,
all 78 patterns are fitted to lognormal distribution. However, the Anderson-Darling
test showed that 73 out of 78 patterns (94%) do not fit to any of the four distributions.
Only 5 (6%) patterns are fitted to lognormal distribution, which is in agreement with
the results of AIC and BIC for those patterns.

Table 4.2. Goodness-of-fit based on three criteria: p-value from the Anderson-Darling test,
the Akaike information criterion (AIC), and the Bayesian information criterion (BIC). The
results are obtained by using 24-h patterns from SPAFDB and LTAFDB

Distribution
No. of fitted patterns

Episode intervals Inter-episode intervals Inter-detection intervals
p-value AIC BIC p-value AIC BIC p-value AIC BIC

Normal 0 0 0 0 0 0 0 0 0
Exponential 4 0 2 1 0 0 0 0 0
Lognormal 21 54 54 19 63 63 5 78 78
Weibull 13 2 2 7 1 1 0 0 0
None 40 22 20 53 16 16 73 0 0

Discussion. Since both, AIC and BIC, are based on the maximum log-likelihood
function, the results from these two criteria match in almost all cases. However, the
results differ considerably from the Anderson-Darling test. One of the reasons is
that the Anderson-Darling test is a statistical test, and it is based on the p-value (sig-
nificance level set to 0.05). While BIC and AIC select the one with the minimum
likelihood value, and the evidence strength is evaluated as the difference between the
selected distribution and the remaining distributions.

Based on AIC and BIC, the analysis of daily patterns showed that the major-
ity of patterns of episode intervals (69%), inter-episode intervals (79%), and inter-
detection intervals (100%) can be described by lognormal distribution. However, the
Anderson-Darling test showed that the majority of patterns of episode intervals (51%),
inter-episode intervals (66%), and inter-detection intervals (94%) cannot be fitted to
the normal, exponential, lognormal, or Weibull distributions. These results differ from
other studies, e.g., it was found that inter-episode intervals follow exponential distri-
bution [92] or Weibull distribution [93,94]. Thus, the conclusion should be made with
caution.

The reason why the majority of cases were not fitted to one of the distribu-
tions can be explained by the observation that AF episodes tend to cluster [93], while
distribution-based characterization rests on the assumption that episodes are statis-
tically independent. Also, a day-long AF pattern is likely to be too short to apply
distribution-based analysis. Further investigation should be based on longer AF pat-
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terns, e.g., several weeks. Lastly, in one of the recently published studies, it was found
that the distribution of the AF burden among patients is bimodal, which means that the
distribution is skewed to the extreme values (i.e., a low and high AF burden) [134].

4.2.2. Model-based pattern characterization

The maximum likelihood estimator was derived to find the model parameters from the
real data by using LTAFDB, AFDB, and SPAFDB (see [10] for details). However,
only recordings with at least 10 episodes are included in the analysis. When using the
maximum likelihood method for parameter estimation, the goodness-of-fit analysis
demonstrated that the alternating, bivariate Hawkes model fitted the data in the vast
majority of recordings. In quantitative terms, Λ1 and Λ2 fit the data in 68% and 97%
recordings, respectively. This result implies that a wide range of episode patterns can
be modeled by using the proposed alternating, bivariate Hawkes model.

Figure 4.11 shows three different modeled AF patterns by changing the param-
eter µ which accounts for rhythm dominance (AF or non-AF) and the parameter β1
which accounts for the degree of episode clustering. AF patterns with µ ¡ 1 are dom-
inated by AF (see Fig. 4.11 c), while patterns with µ   1 are dominated by non-AF
(see Fig. 4.11 a and b). AF episode clustering is related to β1, i.e., a low value of
β1 increases the likelihood that an AF episode is followed by additional AF episodes,
while AF episodes appear to be more spread out in time as β1 increases. This effect is
illustrated in Fig. 4.11 a) and b).
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Figure 4.11. AF episode patterns generated by using the alternating, bivariate Hawkes model:
a) clustered AF episode pattern dominated by non-AF; b) AF pattern dominated by non-AF
and increasing β1 from 0.003 to 0.03, leading to less clustering of AF episodes; and c) AF

pattern dominated by AF, increasing µ from 0.01 to 30
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The results presented in Table 4.3 show the model-based parameter, β1 and µ,
values for different AF pattern types. It is of interest that AF patterns with dispersed
episodes and multiple clusters take much lower β1 values comparing to the patterns
with a single cluster. Also, AF patterns with dispersed episodes have highest µ values
(the mean is 4.19) which means that these patterns are dominated by AF, i.e., µ ¡ 1

is inherent for patterns with longer episodes. The other two types of patterns are
dominated by non-AF (the mean is 0.70 and 0.16 for patterns with single and multiple
clusters, respectively), i.e., µ   1 is inherent for patterns with many short episodes.

Table 4.3. Model-based parameters β1 and µ for different AF pattern types. The results are
obtained by using SPAFDB, AFDB, and LTAFDB and are shown as mean and CI (95%). AF
patterns with less than 10 episodes were excluded. The outliers, defined as three scaled
median absolute deviations away from the median, were excluded as well, which resulted in a
different number of pattern types when reporting β1 and µ parameters

Pattern type No. β1 No. µ

Single cluster 19 0.043 [0.015–0.071] 7 0.702 [0.125–1.278]
Multiple clusters 26 0.008 [0.005–0.011] 26 0.163 [0.103–0.223]
Dispersed episodes 10 0.006 [0.002–0.009] 17 4.191 [0.670–7.713]
Entire database 52 0.009 [0.006–0.011] 50 0.375 [0.234–0.516]

A desirable property of the model-based characterization is to convey informa-
tion complementary to the AF burden. Here, the main model parameters (β1 and µ)
are analyzed with the aim to determine whether they are strongly correlated with the
AF burden or provide different information about the AF pattern. Figure 4.12 presents
scatter plots for the AF burden, β1, and µ. As it is shown, β1 is negatively weakly cor-
related with the AF burden (r � �0.16), whereas µ is positively weakly correlated
(r � 0.24).
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Figure 4.12. Scatter plots of the AF burden and model-based parameters: a) clustering
parameter β1 and b) rhythm dominance parameter µ. The sample Pearson cross-correlation
coefficient r is given in each plot. The results are obtained by using SPAFDB, AFDB, and

LTAFDB. AF patterns with less than 10 episodes as well as outliers were excluded
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Discussion. Goodness-of-fit analysis showed that the alternating, bivariate Hawkes
model is appropriate to model a wide range of AF patterns. The correlation analysis
in Fig. 4.12 shows that the clustering parameter β1 and the rhythm dominance pa-
rameter µ are only weakly correlated with the AF burden and, therefore, may provide
complementary information, which may be useful for risk assessment of ischemic
stroke and as well as for better understanding of AF progression. However, correla-
tion analysis cannot say anything about the clinical significance of a certain parameter,
thus necessitating a study which investigates the significance of the model parameters
for the purpose of, e.g., predicting the risk of stroke. Indeed, the clinical evaluation
of methods for episode pattern characterization has turned out to be a major chal-
lenge as neither the millennial studies [93, 94, 95] nor the study introducing the AF
density [97] investigated the relationship between the pattern characteristics and the
patient outcome, although all of these were published in clinical journals.

The alternating, bivariate Hawkes model requires a certain minimum number of
episodes to produce reliable results. By setting this number to 10, i.e., 20 transitions,
a trade-off was made between the risk of model overfitting and the wish to include as
many recordings as possible. In a future clinical study, this choice may very well be
the subject of further investigation.

4.2.3. Parameter-based pattern characterization

The results presented in Table 4.4 show the AF burden B, aggregation A, and Gini
coefficient G values for different AF pattern types. AF patterns with single or multiple
clusters take low AF burden values compared to AF patterns with dispersed episodes
(the mean is 0.19, 0.20, and 0.64, respectively). These three types of AF patterns can
be distinguished by using the aggregation parameter, i.e., AF patterns with a single
cluster take large A values (the mean is 0.79), slightly smaller values for AF patterns
with multiple clusters (the mean is 0.59), and patterns with episodes dispersed over the
monitoring period take much smaller values (the mean is 0.22). On the other hand, the
Gini coefficient G is similar for all types of pattern, with the larger values for multiple
clusters and the smaller values for a single cluster.

Table 4.4. AF burden B, aggregation A, and Gini coefficient G for different AF pattern types.
The results are obtained by using SPAFDB, AFDB, and LTAFDB and shown as mean and CI
(95%)

Pattern type No. B A G

Single cluster 33 0.192 [0.126–0.258] 0.788 [0.726–0.851] 0.467 [0.361–0.572]
Multiple clusters 43 0.195 [0.144–0.247] 0.592 [0.517–0.667] 0.732 [0.681–0.782]
Dispersed episodes 54 0.678 [0.583–0.773] 0.218 [0.151–0.285] 0.629 [0.572–0.685]
Entire database 130 0.395 [0.333–0.456] 0.486 [0.429–0.544] 0.622 [0.579–0.664]
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Figure 4.13 clearly illustrates that aggregation A depends on the temporal distri-
bution of AF episodes, while the Gini coefficient G depends on the episode duration.
That is, A differs considerably between patterns with highly aggregated episodes and
those with dispersed episodes, see Fig. 4.13 a) comparing to b) and c). Meanwhile, G
is similar due to the presence of episodes with a widely varying duration, see Fig. 4.13
a) and b). On the other hand, the patterns with a high burden B are better reflected
by the G values, see Fig. 4.13 b) and c). Therefore, it is obvious that the presented
parameters provide different information about AF pattern.
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Figure 4.13. AF burden B, aggregation A, and Gini coefficient G for different AF patterns:
a) AF pattern with a single cluster (AFDB), b) AF pattern with 331 short episodes (LTAFDB),

and c) AF pattern with 6 long episodes (LTAFDB)

Analyzing AF patterns from SPAFDB, AFDB, and LTAFDB, the aggregation A
and the Gini coefficient G are analyzed with the aim to determine whether they are
strongly correlated with the AF burden B. Figure 4.14 a) shows that A is negatively
strongly correlated with the AF burden B (r � �0.90), and the correlation increases
for an increasing B. For example, by analyzing only AF patterns with the AF burden
less than 0.5 (87 patterns), the correlation between B and A is �0.70, while analyzing
AF patterns with the AF burden less than 0.4 (81 patterns), 0.3 (98 patterns), 0.2
(49 patterns), and 0.1 (41 patterns), the correlation decrease to �0.59, �0.50, �0.28,
and �0.20, respectively. This means that the aggregation parameter is particularly
important in the AF pattern with the AF burden less than 0.5 (see Fig. 4.15).

On the other hand, the Gini coefficient G is independent of the AF burden B
(r � 0.07, Fig. 4.14 b). Even for B values close to 1, G takes different values since
the episode duration is highly variable among the distinct AF patterns.

69



0

0.2

0.4

0.6

0.8

1

A
F
bu
rd
en

0

0.2

0.4

0.6

0.8

1

A
F
bu
rd
en

r = 0.07r = -0.90
a) b)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4.14. Scatter plots of AF burden B and a) aggregation A and b) Gini coefficient G.
The sample Pearson cross-correlation coefficient r is given in each plot. The results are

obtained by using SPAFDB, AFDB, and LTAFDB

-1

-0.8

< 1
AF burden

N
o.
of

A
F
pa
tte
rn
s

C
or
re
la
tio

n
co
effi

ci
en
t

< 0.9 < 0.8 < 0.7 < 0.6 < 0.5 < 0.4

-0.6

-0.4

-0.2

0

25

50

75

100

125

150

< 0.3 < 0.2 < 0.1

r

Figure 4.15. Influence of AF burden on the Pearson cross-correlation coefficient r between
AF burden B and aggregation A. The circles represent correlation coefficient value, while the

bars represent the number of AF patterns with AF burden   1,   0.9, ...   0.1. The results
are obtained by using SPAFDB, AFDB, and LTAFDB

Discussion. Several studies have shown a link between the AF burden and the in-
creased risk of stroke, however, the threshold of the AF burden is unclear and varies
considerably among studies [135, 136]. Therefore, there is a good reason to presume
that the pattern itself may have a role on thrombus formation. This investigation shows
that the aggregation is capable of differentiating patterns even when only day-long or
a few-days long recordings are available. This is in contrast to the distribution-based
characterization which requires a large number of AF episodes, and, therefore, day-
long recordings are usually insufficient. The results showed that the aggregation is
useful for AF pattern analysis with a low AF burden (e.g.,   0.50), while the Gini
coefficient is useful for discriminating patterns with a high AF burden, and can thus
be used as a complementary to the aggregation.
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The limitation of the present investigation of the model-based and parameter-
based characterization is that, due to the lack of knowledge about the AF pattern, each
observed pattern was assigned to one of the three types of pattern heuristically defined
based on manual inspection. Some patterns could not be easily assigned to a specific
pattern type, thus the results should be interpreted with caution. In contrast to the
commonly used AF burden, the investigated parameters are not as easily interpreted,
and the ranges characterizing different patient groups should be drawn with caution.

Parts of Sec. 4.2 have been quoted verbatim from the previously published arti-
cles: [10, 13].

4.3. Analysis of atrial fibrillation patterns

4.3.1. Circadian analysis of atrial fibrillation

The AF pattern may vary considerably among patients. Figure 4.16 shows 4-days
long AF patterns from three different patients from SPAFDB. In the first example
(Fig. 4.16 a), AF takes 59.39% of the monitoring time and consists of only 20 episodes,
while the AF patterns in Fig. 4.16 b) and c) consist of 533 and 151 episodes, respec-
tively. However, the AF burden is 4–11 times smaller in these patterns comparing to
the first one. Also, from Fig. 4.16 b) and c), it can be clearly seen that AF episodes
tend to cluster in time.

Figure 4.17 shows the circadian variation of AF expressed as the AF burden per
hour. The results showed the clear dominance of AF at night and a peak around 19:00
o’clock (the mean AF burden is more than 0.2). Meanwhile, during the day-time, i.e.,
between 11:00–17:00 o’clock, the AF burden is lower.

Discussion. The circadian rhythm helps to regulate the process in the body dur-
ing the 24-hour period. It is inherent for cardiovascular diseases as well [137]. AF
episodes do not occur randomly; for example, some patients report that AF episodes
occur at about the same time of the day, usually in the evening or at night [138, 139].
This is in agreement with the present investigation showing that AF episodes tend
to occur during the night-time (cf. Fig. 4.17). However, other studies also showed
that AF episodes are more common during the morning hours [140, 141] or in the
daytime [140].

Even though results from different studies are not conclusive, they still suggest
that the AF pattern might change depending on the circadian rhythm. It might be
that the differences among studies are related to patient characteristics, e.g., age. A
few studies reported that, for younger patients, AF episodes occur at night, while,
for older patients, AF episodes occur during the day [138, 142]. In future studies,
circadian analysis could be extended to the weekly or yearly AF pattern analysis [141].
However, it requires continuous long-term monitoring of patients.
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15.19% of the total monitoring time, and c) 151 episodes which take 5.51% of the total
monitoring time. The blue lines show AF episodes

0 2 4 6 8 10 12 14 16 18 20 22 24

Time of the day, hours

0.1

0.15

0.2

0.25

0.3

M
ea

n
 o

f 
A

F
 b

u
rd

en

Figure 4.17. Circadian variation of AF burden. Results are obtained from 66 day-long AF
patterns from 19 patients from SPAFDB. Note, only these AF patterns which take the whole

day, i.e., from 00:00 to 23:59, are included in the analysis

72



4.3.2. Investigation of atrial fibrillation pattern reconstruction

Since the AF pattern can vary considerably (e.g., see Fig. 4.16), it is essential to under-
stand how well AF episode patterns can be captured by using different AF detectors
and how false detection influences the AF pattern characterizing parameters.

Figure 4.18 shows two examples of AF patterns, one with brief AF episodes, and
the other one with longer episodes. The AF pattern with brief AF episodes (Fig. 4.18,
left column) is best captured by the rhythm- and morphology-based detector. The
DL-based detector has the highest sensitivity, however, the detector-produced pattern
differs from the reference pattern since a few consecutive episodes are merged into
a single episode. Therefore, the AF pattern cannot be captured properly, i.e., the AF
burden for the reference AF pattern is 0.56, while the AF burden resulting from the
DL-based detector is 0.81. For comparison, the AF burden resulting from the rhythm-
based and the rhythm- and morphology-based detectors is 0.57 and 0.53, respectively.
Also, in this case, the information about AF episode clustering is lost.

Figure 4.18. a) Reference AF pattern with brief (left column) and longer (right column)
episodes and detector-produced patterns by using b) rhythm-based, c) rhythm- and

morphology-based, and d) DL-based detector

On the contrary, when processing the AF pattern with longer episodes (Fig. 4.18,
right column), both the rhythm-based and the rhythm- and morphology-based detec-
tors tend to split a single AF episode into a cluster, while the DL-based detector does
not do so since it processes ECG segments. This result also influences the AF pattern,
i.e., the AF burden for the reference AF pattern is 0.53, while the AF burden for the
detector-produced patterns by using the rhythm-based, the rhythm- and morphology-
based, and the DL-based detectors are 0.45, 0.46, and 0.59, respectively.

Detector-based patterns consisting of short false alarms may have a different
clinical meaning and may carry different information on AF progression. In the given
example in Fig. 4.19, the annotated pattern is contaminated with false alarms resulting
in a slightly larger AF burden B, while the influence of false alarms on the parameters
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used for pattern characterization (i.e., β1, µ, and A) is considerably larger. Since AF
episodes as well as false alarms are short, the influence on the Gini coefficient is small
in this particular example.
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Figure 4.19. Influence of false alarms on parameters characterizing AF pattern: a) annotated
AF pattern from LTAFDB and b) detector-based pattern

To shed further light on the problems regarding the reconstruction of the AF pat-
tern, Fig. 4.20 shows differences in the clustering parameter β1, the rhythm dominance
parameter µ, the AF burden B, the aggregation A, and the Gini coefficient G obtained
from the reference (annotated) and detector-based patterns. In most cases, the AF bur-
den of the detector-based pattern is similar to that of the annotated pattern (r � 0.97).
Conversely, the aggregation values computed for detector-based patterns differ from
the annotated one (r � 0.89), which means that false alarms, undetected episodes,
and fractured episodes have a large influence on the reconstructed pattern. The most
challenging are the AF patterns with highly aggregated episodes since undetected and
falsely detected episodes distort the pattern to the extent that it becomes substantially
different from the annotated one. An ever worse situation is with the β1 parameter,
the µ parameter, and the Gini coefficient, as the influence of falsely detected episodes
is huge (r � 0.14, r � 0.64, and r � 0.39, respectively).
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Figure 4.20. Detector-based reconstruction of AF patterns expressed as episode clustering
parameter β1, rhythm dominance parameter µ, AF burden B, aggregation A, and Gini

coefficient G. The sample Pearson cross-correlation coefficient r is given in each plot. The
results are obtained by using the rhythm-based detector on SPAFDB, AFDB, and LTAFDB
databases. AF patterns with less than 10 episodes were excluded, resulting in a total of 69

patterns
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Discussion. In the current clinical practice, AF has to be documented before the
treatment, e.g., anticoagulation, can be started. Thanks to the advancements in the
sensor technology, the ECG can today be registered over an extended time period and
analyzed for the purpose of understanding the AF progression. The analysis should ex-
pand beyond the AF burden and provide more detailed characterization of the tempo-
ral AF episode patterns, e.g., whether the episodes are clustered or distributed evenly
across the monitored period. Such information may be used to understand the signifi-
cance of AF triggers and the development of such complications as stroke. However,
more sophisticated analysis of episode patterns implies higher demands on AF detec-
tion performance. As illustrated by Fig. 4.19, annotated patterns differ considerably
from those produced by the detector, and, as a result, β1, µ, A, and G differ con-
siderably as well (Fig. 4.20) since these parameters account for the AF pattern (i.e.,
clustering of episodes, temporal distribution of episodes, and episode duration). In
contrast, the AF burden B obtained from the detector-produced patterns highly corre-
late with the reference (r � 0.97), however, it only evaluates the time spent in AF.

Unfortunately, episode analysis is made difficult in recordings containing noisy
segments as AF detection becomes unreliable. Rather than simply discarding such
segments from further analysis, as it is often done, future research should focus on
improving the electrode technology and algorithms for signal processing and machine
learning so that to ensure more reliable reconstruction of the AF pattern which will
lead to the more sophisticated characterization of the episode patterns. So far, infor-
mation about the reliability of the AF pattern reconstruction is still lacking.

Parts of Sec. 4.3.2 have been quoted verbatim from the previously published
articles: [9, 11].

4.4. Atrial fibrillation pattern relationship with atrial echocardiographic pa-
rameters

Here, by using SPAFDB, the main model parameters (the parameter accounting for
episode clustering β1 and rhythm dominance µ), the AF burden B, the aggregation A,
and the Gini coefficient G are analyzed with the aim to determine whether they are
correlated with echocardiographic measurements, such as the LA volume and the LA
strain, reflecting the mechanical atrial performance.

Figure 4.21 presents scatter plots for the AF pattern characterizing parameters
and echocardiographic measurements. As it is shown, β1, µ, and the Gini coefficient
are weakly correlated with the LA volume (r � 0.34, r � 0.19, and r � 0.09,
respectively), whereas the AF burden and the aggregation is somewhat more correlated
(r � 0.46 and r � �0.50, respectively). Meanwhile, the AF strain is somewhat more
correlated with µ and the Gini coefficient (r � �0.48 and r � �0.57, respectively).
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Figure 4.21. Association between AF pattern characterizing parameters and
echocardiographic measurements (i.e., LA volume and LA strain). β1 and µ are model-based

parameters related to episode clustering and rhythm dominance, respectively; while B is
burden, A – aggregation, and G – Gini coefficient. The sample Pearson cross-correlation

coefficient r is given in each plot. The results are obtained by using SPAFDB

Discussion. Although the results are not conclusive due to the small sample size,
they still shed some light on this research line. Atrial structural remodeling is as-
sociated with the changes in AF characteristics, often manifested as episodes of an
increasing duration (i.e., the increasing µ and the AF burden B). Therefore, µ and
the AF burden B may reflect the degree of atrial electrical and structural remodeling.
Moreover, the temporal distribution of AF episodes, evaluated by aggregation A, may
be related to the reduction of flow velocity in the left atrial appendage which is asso-
ciated with an increased risk of thrombus formation [26]. However, this relation was
not investigated since the flow velocity of the left atrial appendage was not available
in the database.

Nevertheless, further investigation in larger databases is still required in order to
confirm the clinical value of the AF pattern characterizing parameters (i.e., β1, µ, A,
and G). A prospective study of the association between the AF pattern, not limiting to
the AF burden or the AF stages (i.e., paroxysmal, persistent, permanent), and stroke
would help in the identification of the potential risk factors in AF. Due to the aging
population and the increasing prevalence of AF, it is one of the main challenges that
public health systems are facing today.

Parts of Sec. 4.4 have been quoted verbatim from the previously published arti-
cle: [12].
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4.5. Conclusions of the chapter

1. Three clinical databases were used to investigate three types of AF detectors.
Performed investigation revealed the problem related to data imbalance, i.e.,
Acc being a popular measure in AF detection tends to inflate the performance
for imbalance data. Thus, Mcc should be considered instead. Also, the detec-
tion performance can differ depending on the approach taken to compare the
detector output to annotations. In order to characterize AF patterns, episode-to-
episode comparison should be used since it provides information on how well
the episodes are captured.

2. Simulated recordings helped to investigate the influence of the ECG signal and
the AF pattern properties on detection performance. The influence of the ECG
signal properties depends on the detector structure: i.e., the detection accuracy
of the DL-based detector depends on the ECG morphology; only the rhythm-
and morphology-based detector does not depend on the APB rate; also, the DL-
based detector is less dependent on noise. Meanwhile, the investigation of the
AF pattern properties showed that AF patterns with a high AF burden and brief
episodes imply higher demands on the detection performance.

3. The results of the distribution-based pattern characterization suggest that this
type of method is less suitable for the day-long pattern characterization. Even
if AIC and BIC assigned the majority of patterns to lognormal distribution, the
Anderson-Darling test showed that 51%, 66%, and 94% of the episode, inter-
episode, and inter-detection intervals, respectively, do not fit to any of the dis-
tributions under analysis.

4. The alternating, bivariate Hawkes model is well suited to produce a wide range
of the AF patterns accounting to AF episode clustering. The main model pa-
rameters (i.e., β1 accounting to episode clustering and µ accounting to rhythm
dominance) can be used for AF pattern characterization. These parameters con-
vey information complementary to the AF burden (r � �0.16 and r � 0.24,
respectively).

5. A combination of the parameters suggested for AF pattern characterization (i.e.,
aggregation and the Gini coefficient) allows to analyze different types of AF
patterns and can be used for characterization. The aggregation is negatively
correlated with the AF burden (r � �0.90), however, the correlation decreases
for the decreasing AF burden, e.g., the correlation decreases to �0.70, �0.59,
�0.50, �0.28, and �0.20 for AF patterns with the AF burden less than 0.5, 0.4,
0.3, 0.2, and 0.1, respectively. The Gini coefficient is independent of the AF
burden (r � 0.07).
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6. The circadian analysis of AF patterns showed that AF is dominated at night, and
there is a peak at around 19:00 o’clock.

7. AF pattern capturing is challenging since false alarms and misdetected episodes
distort AF patterns, and this exerts influence on the pattern characterizing pa-
rameters. The correlation among the parameters obtained from the annotated
and detector-based patterns is 0.14, 0.64, 0.97, 0.89, 0.39 for β1, µ, the AF bur-
den, the aggregation, and the Gini coefficient, respectively. Thus, more sophis-
ticated analysis of episode patterns implies higher demands on the AF detection
performance. Further research should focus on ensuring reliable recognition of
AF patterns.

8. Despite the small database, the AF pattern characterizing parameters were in-
vestigated together with echocardiographic measurements. However, only the
AF burden and the aggregation is somewhat more correlated with the LA vol-
ume (r � 0.46 and r � �0.50, respectively), while the AF strain is somewhat
more correlated with µ and the Gini coefficient (r � �0.48 and r � �0.57,
respectively).
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5. CONCLUSIONS

1. The model of the temporal distribution of paroxysmal AF episodes has been de-
veloped which accounts to AF episode clustering. The proposed model is based
on the alternating, bivariate Hawkes process and can be used to model a wide
range of episode patterns. An important feature of the model is that it is capable
of estimating AF pattern characterizing parameters, i.e., the parameter β1 is re-
lated to AF episode clustering, while the parameter µ indicates the dominance
of AF vs. non-AF rhythm.

2. Three different approaches towards the characterization of the temporal distri-
bution of paroxysmal AF episodes have been proposed. The distribution-based
pattern characterization is less suitable to characterize AF patterns since 51%,
66%, and 94% of episode, inter-episode, and inter-detection intervals, respec-
tively, do not fit to any of the distributions under investigation. The model-based
parameters convey information complementary to the AF burden (the correla-
tion between the AF burden and β1 and µ is�0.16 and 0.24, respectively). Even
if the aggregation is negatively correlated with the AF burden (r � �0.90), a
combination of the AF burden, aggregation, and the Gini coefficient allows to
distinguish different types of the pattern (i.e., a single cluster, multiple clusters,
dispersed episodes). The aggregation is better suited for discriminating the tem-
poral AF patterns with a low AF burden (  0.5), while the Gini coefficient is
useful for discriminating patterns with a high AF burden and can thus be used
as a complementary parameter to the aggregation.

3. Detection performance is influenced by the ECG signal properties (i.e., the ECG
morphology, the number of atrial premature beats, the noise level) as well as the
AF pattern properties (i.e., the AF burden and the episode length). For the AF
pattern characterization, the detector-based pattern should preferably be com-
pared with annotation by using the episode-to-episode comparison approach,
while the detection performance should be evaluated in terms of Mcc, rather
than Acc or F1, and Se, Sp, and PPV should be provided as well. More sophisti-
cated analysis of episode patterns implies higher demands on the AF detection
performance. The correlation among the parameters obtained from annotated
and detector-based patterns is 0.14, 0.64, 0.97, 0.89, 0.39 for β1, µ, the AF bur-
den, aggregation, and the Gini coefficient, respectively. Thus, future research
should focus on the quality of capturing episode patterns.
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SANTRAUKA

ĮVADAS

Tyrimo aktualumas
Prieširdžių virpėjimas (PV) – labiausiai paplitusi širdies aritmija visame pasauly-

je. PV yra vyresnio amžiaus žmonių liga, todėl dėl sparčiai senstančios populiacijos
PV paplitimas didėja [2]. 2010 m. duomenimis, Europos Sąjungoje PV sirgo 8,8 mln.
vyresnių nei 55 metų asmenų, o iki 2060 m. šis skaičius gali padidėti iki 17,9 mln. PV
sergantys asmenys yra labiau linkę sirgti gretutinėmis ligomis. Šiems asmenims yra
5 kartus padidėjusi insulto rizika, 3 kartus padidėjusi širdies nepakankamumo rizika
ir 1,5–3,5 karto padidėjusi bendro mirtingumo rizika [3]. Su PV susijęs insultas arba
širdies nepakankamumas lemia didesnį mirtingumą nei šios ligos atskirai [4]. Maž-
daug 30 % PV sergančių pacientų kasmet bent vieną kartą patenka į ligoninę, o 10 % –
daugiau nei du kartus. Todėl 16–20 % PV pacientų kenčia nuo depresijos, o gyvenimo
kokybė pablogėja daugiau nei 60 % pacientų.

PV yra progresuojanti liga, pradžioje pasireiškianti savaime nutrūkstančiais pa-
roksizminiais PV epizodais. Paroksizminiai PV epizodai yra reti, trumpi ir dažnai be-
simptomiai, todėl neretai PV yra diagnozuojamas vėlesnių stadijų, ligai progresavus.
PV progresavimas į nuolatinę formą (persistentinį arba permanentinį PV) yra sieja-
mas su išaugusia širdies ir kraujagyslių ligų, hospitalizacijos ir mirties rizika [3, 5].
Gydymo sėkmė labai priklauso nuo to, kurioje aritmijos vystymosi stadijoje diag-
nozuojamas PV, todėl svarbu diagnozuoti PV dar pradinėje stadijoje, o tam reikalingos
technologijos, kurios užtikrintų ilgalaikę stebėseną.

Naujausia technologijų pažanga užtikrina ilgalaikę pacientų stebėseną panaudo-
jant įvairius dėvimus prietaisus, pvz., išmaniuosius laikrodžius. Ilgalaikis pacientų
stebėjimas yra svarbus norint individualizuoti PV būsenos vertinimą [6]. Be to, il-
galaikis stebėjimas atveria galimybę charakterizuoti PV profilį atsižvelgiant į epizodų
pasiskirstymą laike ir jų susigrupavimą į klasterius [7]. Naujausiose klinikinėse gairė-
se [3] pabrėžiamas PV profilių analizės poreikis, taip papildant dažnai naudojamą
bendros PV trukmės įvertį. Tačiau iki šiol mažai žinoma apie PV profilių vaidmenį
aritmijos progresavimui ir komplikacijų vystymuisi. Manoma, kad PV profilis gali
būti susijęs su krešulių susidarymo rizika. Kadangi kraujo tėkmės greitis kairiojo
prieširdžio ausytėje mažėja PV metu [8], daroma prielaida, kad krešulių susidarymo
rizika yra didesnė, kai PV epizodai yra susigrupavę laike. Todėl PV profilių supra-
timas gali turėti įtakos individualizuoto gydymo valdymui ir komplikacijų (pvz., in-
sulto) prognozavimui bei rizikos įvertinimui.

Atsižvelgiant į bendrą PV trukmę, epizodų skaičių, epizodų trukmę ir epizodų
pasiskirstymą laike, PV profiliai yra labai skirtingi [7]. Tačiau trūksta metodų, kurie
leistų visapusiškai charakterizuoti PV profilį. Taip pat, siekiant charakterizuoti PV
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profilius, yra svarbu įvertinti, kaip tiksliai galima atkurti PV profilius naudojant au-
tomatinius atpažinimo algoritmus. Pastaruoju metu sparčiai kuriami įvairūs PV at-
pažinimo algoritmai, pvz., [36]–[52], dėl to kyla iššūkis, kaip tinkamai įvertinti ir
palyginti esamų ir kuriamų detektorių patikimumą. Detektorių patikimumą vertinan-
tys įverčiai turėtų būti papildomi tyrimais, vertinančiais PV profilio atkūrimo patiki-
mumą. Pavyzdžiui, neaišku, kaip patikimai veikia PV detektoriai esant skirtingiems
PV profiliams, t. y. ar profilis su keliais trumpais PV epizodais yra atpažįstamas taip
pat patikimai, kaip ir profilis, kuriame dominuoja ilgi epizodai. Vis dėlto esami tyri-
mai su PV detektoriais suteikia labai mažai informacijos apie PV profilio atkūrimo
patikimumą.

Mokslinė ir technologinė problema bei darbinė hipotezė
Laikinis PV epizodų profilis gali būti susijęs su krešulių susidarymo rizika.

Daroma prielaida, kad rizika yra didesnė, kai PV epizodai yra susigrupavę laike, nes
PV metu kairiojo prieširdžio ausytėje kraujo srauto greitis lėtėja. Nors informacijos
apie PV profilį trūksta, tikimasi, kad atsirandančios neinvazinės ilgalaikio stebėjimo
technologijos padės užpildyti šią žinių spragą. Tačiau, norint iki galo išspręsti šią
problemą, reikia metodų, skirtų PV profiliui charakterizuoti.

Mokslinė ir technologinė problema: Kokiais būdais galima charakterizuoti
paroksizminio PV epizodų pasiskirstymą laike, kad būtų galima atskirti skirtingus PV
profilių tipus, kurie yra svarbūs norint geriau suprasti PV profilio ryšį su krešulių
susidarymo rizika?

Darbinė hipotezė: Paroksizminio PV profilius galima charakterizuoti atsižvel-
giant į PV trukmę, PV epizodų pasiskirstymą laike ir susigrupavimą į klasterius,
panaudojant statistinių skirstinių analize pagrįstą būdą, modeliu pagrįstą būdą ir para-
metrais pagrįstą būdą.

Tyrimo objektas – šiame darbe vystomi ir tiriami signalų apdorojimo algoritmai,
skirti PV profiliui charakterizuoti.

Tyrimo tikslas – sukurti ir ištirti prieširdžių virpėjimo profilių charakterizavimo algo-
ritmus.

Tyrimo uždaviniai
1. Sukurti prieširdžių virpėjimo epizodų pasiskirstymo fenomenologinį modelį.

2. Sukurti prieširdžių virpėjimo epizodų pasiskirstymo laike charakterizavimo al-
goritmus.

3. Ištirti prieširdžių virpėjimo atpažinimo algoritmų savybių įtaką prieširdžių virpė-
jimo profilį charakterizuojantiems parametrams.
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Mokslinis naujumas
Šioje daktaro disertacijoje pristatomi PV atpažinimo algoritmų tyrimų rezul-

tatai, kurie yra būtini siekiant atskleisti aspektus, susijusius su patikimu PV profilių
atkūrimu. Darbe pateikiamos skirtingų PV detektorių tipų (t. y. ritmo analize, ritmo ir
morfologijos analize pagrįstų detektorių ir giliojo mokymosi detektoriaus) silpnybės ir
stiprybės. Taip pat pabrėžiami PV profilio atkūrimo iššūkiai ir pateikiamos rekomen-
dacijos, kaip tvarkyti PV duomenis ir įvertinti PV detektorių patikimumą.

Pasiūlyti ir ištirti trys būdai PV profiliui charakterizuoti. Vienas iš jų yra pagrįstas
statistinių skirstinių analize, kuri remiasi prielaida, kad epizodai yra statistiškai nepri-
klausomi. Kadangi PV epizodai yra linkę susigrupuoti laike į klasterius, ši prielaida
kelia abejonių dėl šio būdo tinkamumo įvertinti PV profilius. Taip pat šis būdas yra
mažiau tinkamas trumpiems (pvz., dienos trukmės) PV profiliams analizuoti dėl ne-
didelio epizodų skaičiaus. Kitas būdas – naudoti parametrus, gautus iš PV profilių
modelio, kuris pagrįstas kintamu dvimačiu Hawkeso procesu. Modelio parametrai
suteikia informaciją apie PV epizodų klasterius ir ritmo dominavimą (t. y. PV ar ne).
Paskutinis būdas – panaudoti įvairius parametrus, tokius kaip santykinė bendra PV
trukmė, agregacija ir Gini koeficientas. Santykinė bendra PV trukmė yra gerai ži-
nomas parametras, naudojamas PV tyrimuose, tačiau jis suteikia informaciją tik apie
bendrą PV trukmę. Agregacija įvertina PV epizodų pasiskirstymą laike, o Gini koefi-
cientas, gerai žinomas ekonomikoje, suteikia informaciją apie epizodų trukmių nely-
gybę. Kombinuojant modelio parametrus su pasiūlytais papildomais parametrais (san-
tykine bendra PV trukme, agregacija ir Gini koeficientu), galima analizuoti skirtin-
gus PV profilių tipus – sudarytus iš vieno klasterio, iš kelių klasterių ar epizodų,
pasiskirsčiusių per visą stebėjimo laikotarpį.

Praktinė reikšmė
1. Atlikti PV detektorių tyrimai bei pasiūlyti PV profilių charakterizavimo spendi-

mai yra svarbūs:

(a) Atskleisti iššūkiai susiję su PV atpažinimo algoritmų kūrimu.

(b) Pasiūlytos rekomendacijos, kaip tvarkyti PV duomenis ir įvertinti PV de-
tektorių patikimumą.

(c) Pasiūlytas modelis, skirtas PV profiliams modeliuoti, yra tinkamas charak-
terizuoti PV profilį panaudojant modelio parametrus, kurie suteikia infor-
maciją apie epizodų susigrupavimą į klasterius ir ritmo dominavimą.

(d) Siūlomi PV profilių charakterizavimo algoritmai gali pagerinti aritmijos
progresavimo supratimą.

(e) Siūlomi PV profilių charakterizavimo algoritmai gali būti panaudojami
norint suprasti ryšį tarp PV profilio ir komplikacijų rizikos (pvz., krešulių
susidarymo ar išeminio insulto rizikos).
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(f) Siūlomi PV profilių charakterizavimo algoritmai gali būti panaudojami
identifikuojant potencialius PV trigerius.

2. Šioje daktaro disertacijoje pateikiamiems metodams plėtoti galimybes sudarė
Lietuvos mokslo tarybos mokslininkų grupių projektas „Poinsultinės būklės
pacientų prieširdžių aritmijų ilgalaikės netrukdančios stebėsenos metodai –
AFterStroke“ (S-MIP-17/81), 2017–2019 m.

3. Šiuo metu sukurti metodai taikomi Europos Sąjungos struktūrinių fondų fi-
nansuojamame projekte „Personalizuotas paroksizminio prieširdžių virpėjimo
trigerių atpažinimas ir valdymas naudojant dėvimas technologijas –
TriggersAF“ (01.2.2-LMT-K-718-03-0027), 2020–2023 m.

Tyrimo rezultatų aprobavimas
Daktaro disertacija remiasi dviem pagrindiniais straipsniais, publikuotais tarp-

tautiniuose moksliniuose žurnaluose, turinčiuose cituojamumo rodiklį „Clarivate An-
alytics Web of Science“ duomenų bazėje. Iš viso rezultatai publikuoti septyniuose
moksliniuose straipsniuose. Sukurti sprendimai buvo pristatyti trijose tarptautiniu
mastu pripažintose konferencijose: 45-oje, 47-oje ir 48-oje konferencijoje „Comput-
ing in Cardiology“.

Atlikti tyrimai buvo teigiamai įvertinti 48-oje konferencijoje „Computing in
Cardiology 2021“ (Brno, Čekija), pristatytas tyrimas pateko tarp pusfinalio dalyvių
Rosanna Degani jaunųjų tyrėjų apdovanojimo konkurse. 2019 m., 2020 m. ir 2022 m.
gauta Lietuvos mokslo tarybos stipendija už studijų rezultatus. 2018 m., 2019 m. ir
2021 m. gauta aktyviausio KTU doktoranto stipendija Elektros ir elektronikos inžine-
rijos studijų kryptyje.

Ginti teikiami teiginiai

1. PV atpažinimo algoritmų patikimumo įvertinimas priklauso nuo metodo, pasi-
rinkto siekiant palyginti detektoriaus išėjimą su anotacijomis, bei nuo pasirinktų
parametrų, įvertinančių detektoriaus veikimą. Norint charakterizuoti PV profi-
lius, reikėtų naudoti epizodų palyginimo metodą, o detektorių veikimas turėtų
būti įvertinamas naudojant Matthewso koreliacijos koeficientą Mcc, o ne diag-
nostinį tikslumą Acc.

2. PV profilio atkūrimo patikimumas priklauso nuo elektrokardiogramos (EKG)
signalo savybių (t. y. EKG morfologijos, priešlaikinių prieširdžių susitraukimų
skaičiaus, triukšmo lygio) bei PV profilio savybių (t. y. bendros PV trukmės,
epizodų ilgio). Taip pat PV profilio atkūrimo patikimumas skiriasi priklauso-
mai nuo PV detektoriaus struktūros, t. y. giliojo mokymosi detektorius linkęs
sujungti keletą trumpų greta esančių epizodų į vieną, o ritmo analize ir ritmo
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bei morfologijos analize pagrįsti detektoriai suskaito vieną epizodą į epizodų
klasterį.

3. PV profiliai gali būti charakterizuojami trimis būdais: panaudojant statistinius
skirstinius, PV profilių modelį ir pasiūlytus parametrus. Statistinių skirstinių
analizė yra mažiau tinkamas būdas dienos trukmės profiliams charakterizuoti,
taip pat šis būdas remiasi prielaida, kad epizodai yra statistiškai nepriklausomi.
Modelio parametrų derinys su papildomais pasiūlytais parametrais leidžia ana-
lizuoti skirtingus PV profilių tipus, nes šie būdai suteikia papildomos informa-
cijos apie PV profilį, t. y. modeliu pagrįsti parametrai suteikia informacijos apie
epizodų klasterius ir ritmo dominavimą, o parametrais pagrįstas charakteriza-
vimas suteikia informacijos apie bendrą PV trukmę, PV epizodų pasiskirstymą
laike ir epizodų trukmių netolygumą.

Bendradarbiavimas
Pasiūlytas modelis, skirtas PV profiliams modeliuoti ir PV profilį charakterizuo-

jantiems parametrams įvertinti, yra sukurtas bendradarbiaujant su Lundo universitetu
(Lundas, Švedija). Šiam tikslui pasiekti buvo atlikta trijų savaičių stažuotė Lundo uni-
versitete (nuo vasario 25 d. iki kovo 16 d., 2019 m.), kurios metu aptarta modelio
koncepcija ir įgyvendinimo galimybės.

Tyrimams atlikti naudojami PV atpažinimo algoritmai yra sukurti Andriaus Pet-
rėno (ritmo analize pagrįstas detektorius ir ritmo ir morfologijos analize pagrįstas de-
tektorius) ir Andriaus Sološenko (giliojo mokymosi detektorius).
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1. PRIEŠIRDŽIŲ VIRPĖJIMO PROFILIŲ CHARAKTERIZAVIMO AP-
ŽVALGA

PV įprastai diagnozuojamas iš EKG signalo, kuriame matoma nereguliari skilvelių
veikla (RR intervalai), o normaliam sinusiniam širdies ritmui būdingas P-bangas pakei-
čia nepertraukiamos chaotiškos virpėjimą charakterizuojančios f-bangos (1.1 pav.).
Savaime nutrūkstančių paroksizminio PV epizodų pasiskirstymas laike vadinamas PV
profiliu, kuris gali būti labai įvairus. PV profiliai skiriasi atsižvelgiant į bendrą PV
trukmę, epizodų skaičių, epizodų trukmę ir epizodų pasiskirstymą laike. Pavyzdžiui,
PV profilis gali susidaryti iš kelių laike susikoncentravusių epizodų, taip sudarydamas
klasterius (1.1 pav.).

241262 4 8 10 1814 16 20 220
nėra PV

PV

Laikas, val.

f-bangosf-bangos

RR intervalai RR intervalai RR intervalai RR intervalai

P-bangos P-bangos

1.1 pav. PV profilis su dviem epizodų klasteriais. Aukštas lygis žymi PV, o žemas lygis
žymi, kad nėra PV (sinusinis ritmas ar kito tipo aritmijos). PV metu EKG signale P-bangas
pakeičia nepertraukiamos virpėjimą charakterizuojančios f-bangos, o RR intervalai tampa

nereguliarūs

PV yra siejamas su padidėjusia išeminio insulto rizika [4], žr. 1.2 pav. Prieširdžio
kairioji ausytė yra viena pagrindinių širdies dalių, kurioje formuojasi krešuliai PV
metu [25]. Daugiau nei 90 % išeminių insultų kyla dėl krešulių, susiformavusių
ausytėje [26]. Sinusinio ritmo metu kraujas reguliariai pasišalina iš ausytės, tačiau
PV metu kraujo srautas prieširdžio kairiojoje ausytėje tampa nereguliarus, sulėtėja
ausytės išsivalymo srauto greitis, o būtent tai ir didina krešulių susidarymo riziką [8].
Progresuojant PV, ausytės išsivalymo srauto greitis lėtėja. Keliama klinikinė hipotezė,
kad PV profilis gali būti susijęs su krešulių susidarymo rizika [25], t. y. profilis su epi-
zodais, susikoncentravusiais laike, yra siejamas su didesne rizika (1.2 pav.). Vis dėlto
šiandien trūksta informacijos apie PV profilį ir metodų, kurie leistų charakterizuoti
PV profilį.

PV profilio charakterizavimo problema buvo iškelta dar praeitame šimtmetyje,
tuo tikslu buvo atlikti keli tyrimai analizuojant statistinius skirstinius [92]–[95]. Pas-
taruosius 10 metų ypač suaktyvėjo tyrimai, analizuojant sąsają tarp bendros PV truk-
mės ir krešulių susidarymo rizikos [76]. Tačiau, nepaisant didelio mokslininkų susido-
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mėjimo, bendros PV trukmės ir krešulių susidarymo sąsaja šiuo metu yra vertinama
prieštaringai ir nėra bendrai priimto sprendimo, kokia bendra PV trukmė ar ilgiausio
epizodo trukmė yra reikšminga [24,33]. Naujausiose klinikinėse gairėse pabrėžiamas
poreikis analizuoti ne tik bendrą PV trukmę, bet ir patį PV profilį, pvz., įvertinant
epizodų susikoncentravimą tam tikrame laiko intervale [3].

Maža krešulių susidarymo rizika

0 T

PV

Stebėjimo laikas
nėra PV

Didelė krešulių susidarymo rizika

0 T

PV

Stebėjimo laikas
nėra PV

PV profilis gali būti susĳęs su krešulių susidarymo rizika
PV

13:33

Kairiojo prieširdžio ausytė

Krešulių susidarymo rizika

PV grįžtamo ryšio kilpos
Krešuliai

Kairysis prieširdis

Išmanusis laikrodis

Signalų
apdorojim

as

Elektrokardiograma

PV

13:33

Fotopletizmograma

Klinikinis poreikis

Krešuliai
užkemša smegenų

kraujagysles

Krešuliai keliauja
kraujagyslėmis

1.2 pav. PV ryšys su krešulių susidarymo rizika, ilgalaikių PV profilių rinkimas ir PV
profilių analizės klinikinis poreikis
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2. PRIEŠIRDŽIŲ VIRPĖJIMO PROFILIŲ ATPAŽINIMAS IR CHARAK-
TERIZAVIMAS

2.1 Prieširdžių virpėjimo atpažinimo algoritmai

Šiame darbe naudojami trijų tipų PV atpažinimo algoritmai. Rimto analize pagrįstas
detektorius grindžiamas prielaida, kad PV metu sutrinka reguliarus sinusinis širdies
ritmas ir padidėja vidutinis širdies susitraukimų dažnis. Algoritmas analizuoja tik
trukmių tarp gretimų skilvelių susitraukimo sekas (RR intervalus) [56]. R danteliams
atpažinti naudojamas [99] detektorius. Antrasis yra rimto ir morfologijos analize
pagrįstas detektorius, sukurtas trumpiems (< 30 sek.) PV epizodams atpažinti. Jo
įėjimą sudaro keturi parametrai: RR nereguliarumas įvertinamas prieš tai aprašytu de-
tektoriumi, P-bangų išnykimas, f-bangų atsiradimas ir triukšmo lygis [66]. Trečiasis
detektorius, skirtingai nei pirmieji du, nereikalauja iš anksto apibrėžtų požymių. Tai
giliojo mokymosi detektorius, kuris naudoja 1D konvoliucinį neuroninį tinklą 30 sek.
EKG segmentams apdoroti (V1 derivacija) [9].

2.2 Prieširdžių virpėjimo profilių charakterizavimas

PV profilis gali būti charakterizuojamas trimis skirtingais būdais. Pirmasis būdas yra
pagrįstas statistinių skirstinių analize. Antrasis būdas yra pagrįstas modeliu, skirtu PV
profiliui modeliuoti, o trečiasis būdas yra panaudoti įvairius parametrus.

2.2.1 Skirstinių analizė

Skirstinių analize pagrįstas charakterizavimo būdas remiasi statistinių skirstinių pri-
taikymu prie duomenų. PV profilių analizėje dažniausiai naudojami keturi skirstiniai:
normalusis, lognormalusis, eksponentinis ir Weibullio [93, 94]. Šiame darbe ana-
lizuojamos PV epizodų trukmės, trukmės tarp gretimų epizodų ir trukmės tarp gretimų
epizodų pradžių, kurios gaunamos iš PV profilio (2.1 pav.). Šių trukmių histogramos
yra pritaikomos prie kiekvieno iš skirstinių, ištraukiami parametrai, apibūdinantys
tikimybių tankio funkciją, ir įvertinama skirstinio prisitaikymo kokybė.

nėra PV
0 t₁,₁ t₂,₁ t₁,₂ t₂,₂ t₁,₃ t₂,₃

PV

Epizodų trukmė

Trukmė tarp epizodų pradžių

Trukmė tarp epizodų

2.1 pav. PV profilis su pažymėta epizodų trukme, trukme tarp gretimų epizodų ir trukme tarp
gretimų epizodų pradžių. Laikai t1,1, t1,2, t1,3, ... žymi PV epizodo pradžią, o

t2,1, t2,2, t2,3, ... žymi PV epizodo pabaigą
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Skirstinių tikimybių tankio funkcija gali būti aprašoma keturiais parametrais
(vietos, mastelio, formos ir slenksčio), kurių skaičius kinta priklausomai nuo skirstinio
tipo: normalusis ir lognormalusis skirstinys aprašomas dviem parametrais, vidurkiu ir
standartiniu nuokrypiu; eksponentinis skirstinys aprašomas mastelio parametru, nuro-
dančiu eksponentės slopimo greitį; Weibullio skirstinys aprašomas formos ir mastelio
parametrais. Parametrams ištraukti naudojamas didžiausio tikėtinumo metodas, kurio
tikslas yra rasti tokius parametrus, su kuriais tikėtinumo funkcija yra didžiausia.

Siekiant didesnio rezultatų patikimumo, skirstinių prisitaikymas prie trukmių
histogramų įvertinamas naudojant tris metodus: Andersono-Darlingo testą [104], Akai-
ke’ės ir Bayesian’o informacijos kriterijus [105]. Andersono-Darlingo testas – statisti-
nis testas, kurio metu keliama nulinė hipotezė, kad PV profilių trukmių histograma yra
pasiskirsčiusi pagal nurodytą skirstinį. Lyginant skirstinius tarpusavyje, pasirenka-
mas tas, kuris turi didžiausią p vertę, o skirstiniai, kurių p ¤ 0,05 (reikšmingumo
lygmuo 0,05), yra atmetami. Akaike’ės ir Bayesian’o informacijos kriterijai remia-
si didžiausio tikėtinumo funkcija, šiais atvejais parenkamas tas skirstinys, kuris turi
mažiausią įvertį. Kitų skirstinių atmetimo reikšmingumas gali būti įvertinamas re-
miantis prielaida: jei skirtumas tarp išskirto skirstinio informacijos kriterijaus vertės
ir verčių iš kitų skirstinių yra   2, tada nėra pagrindo išskirti vieno skirstinio, pagal
kurį pasiskirsčiusios trukmių histogramos.

2.2.1 Prieširdžių virpėjimo profilių modelio panaudojimas

PV profiliai gali būti charakterizuojami panaudojant PV profilių modelį [10]. Modelis
remiasi kintamu dvimačiu Hawkeso procesu ir yra trumpai aprašytas žemiau.

Modelio aprašymas. PV profilis yra modeliuojamas panaudojant du taškinius pro-
cesus: N1ptq atsižvelgia į perėjimą iš sinusinio ritmo (SR) į PV laiko momentais
t1,1, t1,2, ..., o N2ptq atsižvelgia į perėjimą iš PV į SR laiko momentais t2,1, t2,2, ....
Šis dvimatis taškinis procesas yra aprašomas sąlyginėmis intensyvumo funkcijomis
λ1ptq ir λ2ptq [106]:

λmptq � lim
△tÑ0

PrpNmpt�△tq �Nmptq � 1|Htq
△t

, (2.1)

čia skaitiklis yra sąlyginė tikimybė, kad perėjimas atsiras laiko intervale rt, t�△ts, ir
Ht yra dvimačio taškinio proceso istorija, t. y. perėjimų laiko momentai t1,1, t2,1, t1,2, ...,
kurie atsirado iki laiko t.

Panaudojant dvimatį Hawkeso procesą [107], šie du taškiniai procesai N1ptq ir
N2ptq su sąlyginėmis intensyvumo funkcijomis λ1ptq ir λ2ptq yra aprašomi:

λmptq � µm

2̧

n�1

¸
tk:t¡tn,ku

αm,ne
�βm,npt�tn,kq, (2.2)
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čia µm ¡ 0, αm,n ¥ 0, βm,n ¥ 0, kai m,n � 1, 2, o tn,k prasidėjimo laikai.
Pagrindinė Hawkeso proceso savybė yra ta, kad kiekvienu laiko momentu, kai atsi-
randa naujas taškas (būsenos perėjimas), sąlyginė intensyvumo funkcija λ1ptq iškart
padidėja, priklausomai nuo α1,1 (savaiminio sužadinimo savybė), ir tada mažėja eks-
ponentiškai su parametru β1,1 iki bazinio intensyvumo lygio µ1. Tas pats galioja ir
λ2ptq, tik šiuo atveju turime α2,2, β2,2 ir µ2 parametrus. Kadangi perėjimo tikimybė,
kad atsiras kitas taškas, padidėja iškart, kai įvyksta būsenos perėjimas, šis modelis gali
būti naudojamas modeliuojant PV epizodų klasterius. Modelyje taip pat yra kryžminio
sužadinimo savybė, kuri leidžia N2ptq procesui paveikti N1ptq procesą, t. y. λ1ptq turi
parametrus α1,2 ir β1,2, o λ2ptq – α2,1 ir β2,1.

Dvimačio Hawkeso proceso trūkumas yra tas, kad jis neatsižvelgia į būsenos
perėjimo seką, t. y. perėjimas iš SR į PV (PV epizodo pradžia) ne visada baigiasi
perėjimu iš PV į SR (PV epizodo pabaiga). Tai iš principo netinka PV profiliams
modeliuoti. Dėl šios priežasties λ1ptq ir λ2ptq yra padauginamos iš „įvykimo“ funkci-
jos, taip užtikrinant, kad PV atsiranda po SR, t. y. t1,1   t2,1   t1,2   t2,2   ...:

o1ptq �
#
1, N1ptq � N2pt� d2q,
0, kitu atveju

(2.3)

ir SR atsiranda po PV:

o2ptq �
#
1, N2ptq � N1pt� d2q,
0, kitu atveju,

(2.4)

čia d1 ir d2 yra minimalios PV epizodo ir SR „epizodo“ trukmės. Šios trukmės užtik-
rina, kad, perėjus iš SR į PV, perėjimas iš PV į SR atsirastų tik tada, kai praeina laikas
d1, ir t. t.

Apibendrinant, kintamo dvimačio Hawkeso proceso vizualizacija pateikta
2.1 pav., o sąlyginė intensyvumo funkcija aprašoma:

Λmptq � λmptqomptq,m � 1, 2. (2.5)

Modelio parametrai. Priimant, kad β1,1 � β1,2 � β1 ir β2,1 � β2,2 � β2, modelis
aprašomas 8 parametrais: µ1, α1,1, α1,2, β1 aprašo Λ1ptq ir µ2, α2,1, α2,2, β2 aprašo
Λ2ptq. Parametrams ištraukti iš realių duomenų yra naudojamas didžiausio tikėtinumo
metodas. Jis reikalauja minimalaus epizodų skaičiaus, siekiant užtikrinti ištrauktų
parametrų patikimumą. Šiuo atveju pasirinkta, kad profilis turi būti sudarytas bent iš
10 epizodų.

PV profiliui charakterizuoti pasirinkti du modelio parametrai. Pirmasis β1 yra
susijęs su epizodų susigrupavimu į klasterius, kadangi lėtas eksponentės mažėjimas
(maža β1 vertė) padidina tikėtinumą, kad po PV epizodo seks kitas PV epizodas.
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2.1 pav. Kintamo dvimačio Hawkeso proceso realizacija: a) PV profilis; b) ir c) sąlyginės
intensyvumo funkcijos λ1ptq ir λ2ptq

Priešingai, didėjant β1 parametro vertei, intensyvumo funkcija mažėja sparčiau, kas
lemia, kad epizodai pasiskirsto laike. Antrasis parametras yra susijęs su bazinio inten-
syvumo µ1 ir µ2 parametrais, kurie nurodo vidutinį perėjimų dažnį. O µ1 ir µ2 san-
tykis suteikia informaciją apie ritmo dominavimą, ar tai PV (µ ¡ 1), ar SR (µ   1).

2.2.1 Parametrai, charakterizuojantys prieširdžių virpėjimo profilį

Santykinė bendra PV trukmė. Santykinė bendra PV trukmė B parodo, kokią laiko
dalį visame įraše (pvz., 24 val.) truko suminis virpėjimas, ir yra apskaičiuojama pagal:

B � TAF

T
, (2.6)

čia TAF – suminė bendra PV epizodų trukmė, T – visas stebėjimo laikas. Priklauso-
mai nuo virpėjimo trukmės, B vertė gali kisti nuo 0 iki 1. PV profiliai, kuriuose epi-
zodai užima beveik visą stebėjimo laikotarpį, nesvarbu, ar buvo daug trumpų epizodų,
ar keli ilgi, įgyja parametro vertes, artimas 1, o PV profiliai, kuriuose vienas ar keli
trumpi epizodai užima tik mažą dalį viso stebėjimo laikotarpio, įgyja vertes, artimas
0. Vis dėlto B suteikia informaciją tik apie laiką, praleistą PV būsenoje, tačiau neat-
sižvelgia į laikinį epizodų pasiskirstymą.

Agregacija. Laikinis epizodų pasiskirstymas gali būti charakterizuojamas agregaci-
jos parametru A, kuris kiekybiškai įvertina nuokrypį tarp stebimo PV profilio bei
teorinio tolygiai pasiskirsčiusio profilio. Agregacijai A apskaičiuoti reikia RR interva-
lų sekos, kur kiekvienas RR intervalas priskiriamas PV (1) arba SR (0). Taip pat reikia
apsibrėžti realų a ir teorinį tolygų u PV epizodų trukmės pasiskirstymą laiko interva-

90



luose. Realus pasiskirstymas a gaunamas slenkant langą per dvejetainę seką (žings-
nis lygus vienam RR intervalui) ir randant maksimalų RR intervalų skaičių, priskirtą
PV. Lango ilgis pasirenkamas nuo 1 iki RR intervalų skaičiaus. Teorinis tolygus pa-
siskirstymas u atspindi PV profilį su tolygiai pasiskirsčiusiu PV per visą stebėjimo
laikotarpį ir yra laikomas atraminiu. Toliau agregacija A yra apskaičiuojama pagal:

A � 2

NRRNAF

NRŖ

n�1

|an � un|, (2.7)

čia NRR – bendras RR intervalų skaičius, NAF – RR intervalų skaičius PV metu.
Žiūrint grafiškai, A yra apibrėžiama kaip santykis tarp ploto, apriboto a ir u kreivėmis
(tamsiai mėlynas plotas 2.2 pav., b), ir ploto virš kreivės u (tamsiai ir šviesiai mėlynas
plotas 2.2 pav., b). Agregacijos A vertė gali kisti nuo 0 iki 1. Vertės, artimos 1, rodo
didelę agregaciją, būdingą PV profiliams, kuriuose yra vienas trumpas PV epizodas
arba epizodų klasteris. Ir, atvirkščiai, vertės, artimos 0, rodo mažą agregaciją, būdingą
PV profiliams, kuriuose epizodai pasiskirstę tolygiai per visą stebėjimo laikotarpį,
arba PV profiliams, kuriuose yra vienas epizodas, trunkantis beveik visą stebėjimo
laikotarpį.
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2.2 pav. a) Skirtingi PV profiliai: vienas klasteris sudarytas iš vienodos trukmės epizodų
(kairėje), epizodai pasiskirstę tolygiai (viduryje) ir keli klasteriai su skirtingomis epizodų

trukmėmis (dešinėje). Grafinė iliustracija b) agregacijos A ir c) Gini koeficiento G. Pastaba:
santykinė bendra PV trukmė yra vienoda visuose profiliuose (B � 0,5)
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Gini koeficientas. PV profilis gali būti charakterizuojamas atsižvelgiant į PV epizo-
dų trukmę, nes epizodai gali trukti nuo kelių sekundžių iki kelių valandų ar dienų.
Epizodų trukmių skirtumas yra įvertinamas Gini koeficientu G, kuris yra gerai žino-
mas parametras ekonomikoje, įvertinantis pajamų nelygybę [111]. Gini koeficientui
apskaičiuoti reikia epizodų skaičiaus N ir jų trukmių, kurias panaudojant randamos
absoliučios lygybės e ir Lorenco L kreivės. Absoliučios lygybės kreivė e atspindi PV
profilį, sudarytą iš vienodos trukmės epizodų, o Lorenco kreivė L atspindi kaupiamąją
epizodų trukmės sumą, kai epizodai išrikiuoti didėjančia tvarka.

Turint absoliučios lygybės e ir Lorenco L kreives, Gini koeficientas G apskai-
čiuojamas pagal:

G � 2

NNAF

Ņ

i�1

|ei � Li|. (2.8)

Žiūrint grafiškai, G yra apibrėžiama kaip santykis tarp ploto, apriboto e ir L

kreivėmis (tamsiai mėlynas plotas 2.2 pav., c), ir ploto žemiau kreivės e (tamsiai ir
šviesiai mėlynas plotas 2.2 pav., c). Gini koeficiento G vertė gali kisti nuo 0 iki 1.
Vertės, artimos 1, rodo epizodų trukmių pasiskirstymo nelygybę. Ir, atvirkščiai, vertės,
artimos 0 rodo, kad per visą laikotarpį PV epizodų trukmės yra lygiai pasiskirsčiusios,
t. y. Lorenco kreivė L artima absoliučios lygybės tiesei e.
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3. PRIEŠIRDŽIŲ VIRPĖJIMO PROFILIŲ DUOMENŲ BAZĖS IR DETEK-
TORIŲ PATIKIMUMĄ ĮVERTINANTYS METODAI

3.1 Prieširdžių virpėjimo profilių duomenų bazės

Šiame darbe naudojami tiek realūs, tiek simuliuoti signalai. Realūs signalai yra gauti
iš laisvai prieinamos fiziologinių signalų duomenų bazės PhysioNet [112] bei ben-
dradarbiaujant su Lundo universitetu gauta duomenų bazė iš Sankt Peterburgo uni-
versiteto. MIT-BIH prieširdžių virpėjimo duomenų bazė (AFDB) yra sudaryta iš 25
įrašų, kurių kiekvieno trukmė yra 10 valandų. Ilgai besitęsiančio prieširdžių virpėjimo
duomenų bazė (LTAFDB) sudaryta iš 84 įrašų, kurių kiekvieno trukmė yra 24–25 va-
landos. Sankt Peterburgo universiteto duomenų bazė (SPAFDB) yra sudaryta iš 36
įrašų, kurių trukmė kinta nuo 1 iki 7 dienų (iš viso 158 dienos). Svarbu paminėti, kad
14 įrašų iš SPAFDB turi papildomus echokardiogramos duomenis (kairiojo prieširdžio
tūrį ir įtempimą). Šios trys duomenų bazės yra naudojamos norint ištirti detektorių
patikimumo įverčius, ištirti pasiūlytus būdus charakterizuoti PV profilį, įvertinti PV
profilių atkūrimo patikimumą ir ištirti PV profilį charakterizuojančių parametrų sąsają
su echokardiogramos parametrais.

Simuliuotiems signalams gauti naudojamas modelis, kuris yra skirtas 12 deriva-
cijų EKG signalui su PV epizodais modeliuoti [67]. Modelis leidžia kontroliuoti san-
tykinę bendrą PV trukmę, PV epizodų trukmės medianą, triukšmo lygį ir priešlaikinių
prieširdžių susitraukimų skaičių. Iš viso buvo sumodeliuotos penkios duomenų bazės,
skirtos EKG savybių (morfologijos, priešlaikinių prieširdžių susitraukimų ir triukšmo)
bei PV profilio savybių (epizodų trukmės ir santykinės bendros PV trukmės) įtakai
detektorių veikimui ištirti. Kiekvienu atveju sumodeliuota po 100 1 val. trukmės
EKG įrašų.

3.2 Detektorių patikimumo įvertinimas

Idealiu atveju PV profilis, gautas iš detektoriaus, turėtų būti lygiai toks pat, kaip
atraminis (anotuotas), tačiau reali situacija nėra tokia. PV profilis, gautas iš detektorių,
neretai būna užterštas klaidingai atpažintais ar neatpažintais epizodais. Atraminis PV
profilis gali būti palyginamas su profiliu, gautu iš detektoriaus, naudojant tris būdus.
Labiausiai paplitęs būdas yra kiekvieno širdies dūžio palyginimas (ar jis priskirtas PV,
ar ne). Kitas būdas – palyginti pasirinko ilgio segmentus, priimant, kad segmentas
priskiriamas PV, jei ¡50 % dūžių yra PV. Paskutinis būdas – palyginti teisingai at-
pažintus PV epizodus, vertinant, kad epizodas atpažįstamas, jei persidengimas viršija
numatytą slenkstį, pvz., 50 %.

Detektorių patikimumas įvertinamas šiais įverčiais: jautrumas (Se), specifišku-
mas (Sp), teigiamo testo prognostinė vertė (PPV), neigiamo testo prognostinė vertė
(NPV), diagnostinis tikslumas (Acc), balansuotas diagnostinis tikslumas (AccB), F1

įvertis (F1) ir Mathewso koreliacijos koeficientas (Mcc).
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4. REZULTATAI

4.1 Prieširdžių virpėjimo detektorių patikimumo tyrimas

Detektorių patikimumo įverčiai. Nepaisant to, kad pasiūlyta įvairių PV detektorių
patikimumo įverčių, nėra ištirta, kokią įtaką jiems daro PV profilių savybės. Pavyz-
džiui, 4.1 pav. pateiktas anotuotas PV profilis, kurį sudaro keli PV epizodai, tačiau
PV profilis, gautas naudojant PV detektorių, labai skiriasi dėl klaidingai atpažintų
trumpų PV epizodų. Nepaisant to, operatoriaus charakteringa kreivė (4.1 pav. b) ir
diagnostinis tikslumas (Acc) neatspindi šios problemos. Patikimumo įverčių nejautru-
mas klaidingiems aliarmams yra susijęs su duomenų klasių disbalansu, t. y. pateik-
tame pavyzdyje 96,7 % širdies dūžių priklauso SR, o likę 3,3 % dūžių – PV. Parametrai
F1 ir Mcc yra jautrūs duomenų disbalansui ir įgyja daug mažesnes vertes (atitinkamai
76,4 % ir 88,7 %).
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4.1 pav. a) Anotuotas PV profilis iš SPAFDB (viršuje), kurį sudaro 8 epizodai (medianinė
trukmė 113 dūžių), ir PV detektoriumi gautas PV profilis (apačioje), kurį sudaro 518 epizodų

(medianinė trukmė 15 dūžių); b) operatoriaus charakteringa kreivė ROC

Anotuoti PV profiliai palyginti su skirtingais PV detektoriais gautais profiliais,
taikant tris skirtingus profilių palyginimo būdus. Tyrimas parodė, kad patikimumo
įverčių vertės daug mažesnės naudojant epizodų palyginimo būdą nei taikant dūžių
arba segmentų palyginimo būdus (4.2 pav.). Kadangi nei dūžių, nei segmentų paly-
ginimo metodas neatsižvelgia į atpažintus epizodus, epizodų palyginimo metodas yra
labiau tinkamas detektorių patikimumui vertinti, kai tolimesnis tikslas yra PV profilių
charakterizavimas.

Veiksniai, darantys įtaką detektorių patikimumui. PV detektorių ir kartu PV profi-
lių atkūrimo patikimumui didelę įtaką daro įvairūs fiziologiniai veiksniai ir paties PV
profilio savybės. Tyrimo rezultatai su šių veiksnių įtaka detektorių patikimumui pris-
tatyti šiame poskyryje.
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4.2 pav. Trijų tipų PV detektorių patikimumas taikant epizodų, dūžių ir segmentinį
palyginimo būdus. Dėl algoritmo specifikos giliojo mokymosi detektoriaus patikimumas gali
būti įvertintas tik taikant segmentinį palyginimo būdą. Rezultatai gauti naudojant SPAFDB

Priklausomai nuo EKG derivacijos, naudojamos PV atpažinti, kinta PV pro-
filio atkūrimo diagnostinis tikslumas (4.3 pav.). EKG derivacija didžiausią įtaką daro
giliojo mokymosi PV detektoriui, t. y. didžiausias diagnostinis tikslumas gautas V1

derivacijos, kuri ir buvo naudojama apmokant detektorių, tačiau smarkiai sumažėjo
analizuojant kitas derivacijas. O ritmo bei ritmo ir morfologijos analize pagrįsti de-
tektoriai mažiau jautrūs EKG derivacijos parinkimui.
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b)

4.3 pav. a) EKG derivacijų PV metu pavyzdžiai ir b) diagnostinio tikslumo (Acc)
priklausomybė nuo EKG derivacijos, taikant skirtingą PV detektorių. Rezultatai pateikti

vidurkiu ir 95 % pasikliautinuoju intervalu

Ritmo analizės ir giliojo mokymosi detektorių patikimumą labai blogina priešlai-
kiniai prieširdžių susitraukimai. Didėjant jų skaičiui, šių PV detektorių diagnostinis
tikslumas mažėja (4.4 pav.). O ritmo ir morfologijos analize pagrįsto PV detektoriaus
patikimumas mažiau priklauso nuo priešlaikinių prieširdžių susitraukimų skaičiaus,
nes jis atsižvelgia į EKG morfologiją.
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4.4 pav. a) EKG su skirtingu priešlaikinių prieširdžių susitraukimų skaičiumi ir b)
diagnostinio tikslumo (Acc) priklausomybė nuo priešlaikinių susitraukimų skaičiaus.

Rezultatai pateikti vidurkiu ir 95 % pasikliautinuoju intervalu

Ištyrus PV detektorių patikimumą keičiant triukšmo lygį, įvertinta, kad ritmo
analize bei ritmo ir morfologijos analize pagrįstų detektorių patikimumas pradeda
mažėti, kai triukšmo lygis viršija 0,15 mV (4.5 pav.). Didžiąja dalimi tai priklauso
nuo QRS kompleksų atpažinimo tikslumo (iliustracijoje pateiktas QRS kompleksų at-
pažinimo jautrumas ir teigiamo testo prognostinė vertė). Giliojo mokymo detektorius
mažiausiai priklauso nuo triukšmo lygio, tačiau, net ir esant mažam triukšmo lygiui,
diagnostinis tikslumas mažesnis, palyginti su kitais dviem detektoriais.
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4.5 pav. a) EKG V1 derivacija PV metu su skirtingu triukšmo lygiu ir b) PV detektorių bei
QRS kompleksų atpažinimo algoritmo patikimumo priklausomybė nuo triukšmo lygio.

Rezultatai pateikti vidurkiu ir 95 % pasikliautinuoju intervalu

Atliktas tyrimas, siekiant įvertinti PV profilio savybių įtaką profilių atkūrimo
patikimumui. Tyrimas parodė, kad PV detektorių specifiškumas mažėja, didėjant san-
tykinei bendrai PV trukmei bei trumpėjant epizodų trukmei (4.6 pav.). Tai leidžia
daryti išvadą, kad PV profilius su didele santykine bendra PV trukme bei trumpais
epizodais atkurti naudojant PV detektorius yra sudėtingiausia.
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4.6 pav. PV detektorių patikimumo priklausomybė nuo santykinės bendros PV trukmės:
a) jautrumas, b) specifiškumas, c) diagnostinis tikslumas

Detektorių patikimumo palyginimas. Siekiant palyginti detektorių patikimumą
tarp skirtingų studijų, reikia, kad apmokymo ir testavimo duomenys būtų apdorojami
ir tvarkomi vienodai. Pirmiausia turėtų būti naudojami visi įrašai iš duomenų bazės,
įrašai neturėtų būti atmetami dėl prastos signalo kokybės ar siekiant gauti subalan-
suotus duomenų rinkinius [69]. Antra, detektorių testavimas turėtų būti atliekamas
su kita duomenų baze nei ta, kuri buvo naudojama apmokyti. Trečia, tas pats pa-
cientas neturėtų būti įtrauktas į apmokymo ir testavimo duomenų rinkinius. Ketvirta,
pageidautina pateikti įžvalgų, dėl kokių konkrečių probleminių situacijų pablogėja
detektorių patikimumas.

Atliktas tyrimas, kurio metu išanalizuota, kaip giliojo mokymo detektoriai ir
detektoriai, sukurti naudojant ekspertų iš anksto apibrėžtus požymius (ritmo ir / arba
morfologijos informacija), atitinka apibrėžtus kriterijus. Į analizę įtraukta 14 giliojo
mokymo detektorių [37]–[46], [48, 49, 50, 52] ir 13 ekspertinių detektorių [55], [60]–
[64], [66], [70]–[75]. Tyrimas parodė, kad šių detektorių palyginimas gali būti klai-
dinantis, nes buvo taikyti skirtingi duomenų apdorojimo metodai. Pavydžiui, tik 50 %
giliojo mokymo ir 70 % ekspertinių detektorių buvo ištestuoti naudojant visus įrašus
iš AFDB. Skirtingų pacientų duomenys apmokymo ir testavimo duomenų rinkiniuose
buvo naudojami tik 29 % giliojo mokymo ir 77 % ekspertinių detektorių. Vos vienas
(7 %) giliojo mokymo detektorius buvo ištestuotas su kita duomenų baze, o tai buvo
padaryta su 77 % ekspertinių detektorių. Probleminiai atvejai buvo atskleisti tik su
vienu (7 %) giliojo mokymo ir su 7 (54 %) ekspertiniais detektoriais.
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Rekomendacijos. Atsižvelgiant į atliktų tyrimų rezultatus ir atliktą tyrimų analizę,
išskirtos penkios rekomendacijos, kaip reikėtų įvertinti detektorių patikimumą:

1. Naudoti skirtingus duomenų rinkinius apmokymo ir testavimo fazėse, užtikri-
nant, kad tas pats pacientas neatsirastų šiuose dviejuose duomenų rinkiniuose.

2. Pateikti anotacijų palyginimo metodą ir pagrįsti jo pasirinkimą. Jei reikia, pateik-
ti segmento ilgį bei epizodų persidengimo slenkstį.

3. Detektorių patikimumui įvertinti naudoti Mcc, o ne Acc ar F1. Pateikti Se, Sp
ir PPV, kad būtų lengviau palyginti su jau publikuotais PV detektoriais. Plotas
po ROC kreive neturi būti naudojamas kaip įvertis, vertinantis detektorių patiki-
mumą.

4. Įvertinti fiziologinių ir techninių veiksnių įtaką detektorių patikimumui, įskaitant
derivacijos pasirinkimą, prieširdžių priešlaikinių susitraukimų dažnį, triukšmo
lygį, kitas aritmijas.

5. Skirti ypatingą dėmesį detektorių patikimumui, jei siekiama charakterizuoti PV
profilius.

4.2 Prieširdžių virpėjimo profilių charakterizavimas

4.2.1 Skirstinių analizė

Epizodų trukmių, trukmių tarp epizodų ir trukmių tarp epizodų pradžių prisitaikymo
prie skirstinių rezultatai pateikti 4.1 lentelėje. Rezultatai, gauti iš AIC ir BIC, yra
identiški beveik visais atvejais, didžioji dalis profilių priskirti lognormaliam skirs-
tiniui: 69 % analizuojant epizodų trukmes, 79 % analizuojant trukmes tarp epizodų ir
100 % analizuojant trukmes tarp epizodų pradžių. Vis dėlto rezultatai, gauti panau-
dojant Andersono-Darlingo testą, yra prieštaringi. Šiuo atveju didžioji dalis profilių
buvo nepriskirta nė vienam skirstiniui: 51 %, 66 %, 94 % profilių buvo atmesti ana-
lizuojant atitinkamai epizodų trukmes, trukmes tarp epizodų ir trukmes tarp epizodų
pradžių.

Remiantis tyrimo rezultatais, galima daryti išvadą, kad šis metodas yra mažiau
tinkamas analizuojant dienos trukmės PV profilius dėl mažo epizodų skaičiaus. Taip
pat svarbu ir tai, kad statistiniai skirstiniai remiasi prielaida, jog epizodai yra statis-
tiškai nepriklausomi, tačiau žinoma, kad PV epizodai turi tendenciją sudaryti klas-
terius [96].
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4.1 lentelė. Skirstinių pritaikymas remiantis Andersono-Darlingo testu (p-vertė), Akaike’ės
(AIC) ir Bayesian’o (BIC) informacijos kriterijais. Rezultatai gauti iš 24 val. trukmės profilių
iš SPAFDB ir LTAFDB. Pastaba, epizodas trumpinamas “epi.”

Skirstinys
Pritaikytų profilių skaičius

Epi. trukmė Trukmė tarp epi. Trukmė tarp epi. pradžių
p-vertė AIC BIC p-vertė AIC BIC p-vertė AIC BIC

Normalusis 0 0 0 0 0 0 0 0 0
Eksponentinis 4 0 2 1 0 0 0 0 0
Lognormalusis 21 54 54 19 63 63 5 78 78
Weibullio 13 2 2 7 1 1 0 0 0
Nė vienas 40 22 20 53 16 16 73 0 0

4.2.2 Prieširdžių virpėjimo modelio panaudojimas

PV profiliai gali būti suskirstyti į tris tipus: profiliai su vienu klasteriu, profiliai,
sudaryti iš kelių klasterių, ir profiliai, kuriuose epizodai pasiskirstę per visą stebėjimo
laikotarpį. Rezultatai, pateikti 4.2 lentelėje, rodo modelio parametrų β1 ir µ vertes šių
trijų profilių tipų. Įdomu tai, kad β1 parametro vertė yra daug mažesnė PV profiliuose
su pasiskirsčiusiais epizodais, palyginti su profilių tipais, kuriuose yra epizodų klas-
teriai. PV profiliai su pasiskirsčiusiais epizodais įgyja didesnes µ vertes (vidurkis –
4,19), tai reiškia, kad šiuose profiliuose dominuoja PV.

4.2 lentelė. Skirtingų PV profilių tipų PV profilių modelio parametrų β1 ir µ vertės.
Rezultatai gauti naudojant SPAFDB, AFDB ir LTAFDB ir atvaizduoti vidurkiu ir 95 %
pasikliautinuoju intervalu. PV profiliai su mažiau nei 10 epizodų buvo pašalinti iš tyrimo bei
pašalintos parametrų išskirtys. Dėl išskirčių pašalinimo profilių skaičius (kiekis) kinta
priklausomai nuo parametro

Profilio tipas Kiekis β1 Kiekis µ

Vienas klasteris 19 0,043 [0,015–0,071] 7 0,702 [0,125–1,278]
Keli klasteriai 26 0,008 [0,005–0,011] 26 0,163 [0,103–0,223]
Pasiskirstę epizodai 10 0,006 [0,002–0,009] 17 4,191 [0,670–7,713]
Visi profiliai 52 0,009 [0,006–0,011] 50 0,375 [0,234–0,516]

Atliktas tyrimas, siekiant įvertinti, ar modelio parametrai (β1 ir µ) suteikia pa-
pildomos informacijos apie PV profilį. Tuo tikslu, 4.7 pav. pateikta koreliacija tarp
santykinės bendros PV trukmės B ir modelio parametrų. Rezultatai parodė silpną
neigiamą koreliaciją tarp B ir β1 parametro (r � �0,16) ir silpną koreliaciją tarp B ir
µ (r � 0,24). Taigi, galima daryti išvadą, kad modelio parametrai suteikia papildo-
mos informacijos apie PV profilį, β1 įvertina epizodų susigrupavimą į klasterius, o µ

įvertina ritmo dominavimą.
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4.7 pav. Koreliacija tarp santykinės bendros PV trukmės B ir modelio parametrų: a) β1 ir
b) µ. Kiekvienu atveju pateiktas Pirsono koreliacijos koeficientas r. Rezultatai gauti

naudojant SPAFDB, AFDB ir LTAFDB. PV profiliai su mažiau nei 10 epizodų buvo pašalinti
iš tyrimo ir pašalintos parametrų išskirtys

4.2.3 Parametrai, charakterizuojantys prieširdžių virpėjimo profilį

Rezultatai, pateikti 4.3 lentelėje, rodo skirtingų PV profilių tipų santykinės bendros PV
trukmės B, agregacijos A ir Gini koeficiento G vertes. PV profiliai su vienu klasteriu
ar keliais klasteriais įgyja mažas B vertes, palyginti su PV profiliais, kuriuose epizodai
yra pasiskirstę laike. Šie trys profilių tipai gali būti atskiriami panaudojant agregacijos
A parametrą: PV profiliai su vienu klasteriu įgyja dideles A vertes (vidurkis – 0,79),
profiliai su keliais klasteriais įgyja vidutines A vertes (vidurkis – 0,59), o profiliai su
pasiskirsčiusiais epizodais įgyja mažas A vertes (vidurkis – 0,22). Gini koeficientas
G įgyja panašias vertes visais atvejais.

4.3 lentelė. Skirtingų PV profilių tipų santykinės bendros PV trukmės B, agregacijos A ir
Gini koeficiento G vertės. Rezultatai gauti naudojant SPAFDB, AFDB ir LTAFDB ir
atvaizduoti vidurkiu ir 95 % pasikliautinuoju intervalu

Profilio tipas Kiekis B A G

Vienas klasteris 33 0,192 [0,126–0,258] 0,788 [0,726–0,851] 0,467 [0,361–0,572]
Keli klasteriai 43 0,195 [0,144–0,247] 0,592 [0,517–0,667] 0,732 [0,681–0,782]
Pasiskirstę epizodai 54 0,678 [0,583–0,773] 0,218 [0,151–0,285] 0,629 [0,572–0,685]
Visi profiliai 130 0,395 [0,333–0,456] 0,486 [0,429–0,544] 0,622 [0,579–0,664]

Analogiškai, kaip ir su modelio parametrais, atliktas tyrimas, siekiant įvertinti,
ar agregacija A ir Gini koeficientas G suteikia papildomos informacijos apie PV profilį,
palyginti su santykine bendra PV trukme B. Koreliacija tarp santykinės bendros
PV trukmės B ir agregacijos A bei Gini koeficiento G pateikta 4.8 pav. Rezultatai
parodė stiprią neigiamą koreliaciją tarp B ir A (r � �0,90), tačiau koreliacija mažėja,
mažėjant B vertei. Agregacijos parametras A yra svarbus analizuojant profilius, kurių
B yra mažesnė nei 0,5 (r � �0,70). Gini koeficientas G nepriklauso nuo B (r � 0,07).
Net ir tada, kai B vertės yra artimos 1, G įgyja skirtingas vertes, nes epizodų trukmės
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skiriasi. Tai parodo, kad Gini koeficientas G yra svarbus analizuojant profilius su
didele santykine bendra PV trukme.
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4.8 pav. Koreliacija tarp santykinės bendros PV trukmės B ir a) agregacijos A ir b) Gini
koeficiento G. Kiekvienu atveju pateiktas Pirsono koreliacijos koeficientas r. Rezultatai gauti

naudojant SPAFDB, AFDB ir LTAFDB

4.3 Prieširdžių virpėjimo profilių atkūrimo patikimumo tyrimas

Pagrindinės problemos, susijusios su PV profilių atkūrimu, iliustruojamos 4.9 pav.
Giliojo mokymosi PV detektorius, kuris analizuoja EKG segmentus, tendencingai
jungia trumpus PV epizodus į ilgesnius, taip prarandama informacija apie epizodų
klasterius. Ritmo bei ritmo ir morfologijos analize pagrįsti PV detektoriai elgiasi
priešingai – suskaido ilgesnius PV epizodus į klasterius.
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Se = 85.5 % Sp = 98.4 % Acc = 91.6 %Se = 88.7 % Sp = 92.1 % Acc = 90.2 %

Se = 99.1 % Sp = 86.2 % Acc = 93.0 %Se = 96.7 % Sp = 39.2 % Acc = 71.5 %

4.9 pav. a) Anotuoti PV profiliai su ypač trumpais (kairėje) ir trumpais (dešinėje) PV
epizodais. PV profiliai, gauti naudojant: b) ritmo analize pagrįstą detektorių, c) ritmo ir

morfologijos analize pagrįstą detektorių ir d) giliojo mokymosi detektorių

PV profilių atkūrimo problema išsamiau iliustruojama 4.10 pav., kuriame pateik-
tos modelio parametrų β1 ir µ, santykinės bendros PV trukmės B, agregacijos A ir
Gini koeficiento G vertės, gautos iš atraminio profilio (anotuoto) ir profilio, gauto iš
detektorių. Dažniausiai B vertės atitinka abiem atvejais (r � 0,97). Tačiau agregaci-
jos A vertės skiriasi nuo atraminių (r � 0,89), tai reiškia, kad klaidingai atpažinti
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epizodai ar suskaidyti epizodai turi didelę įtaką epizodų pasiskirstymui laike. Dar
sudėtingesnė situacija yra su modelio parametrais (β1 ir µ) ir Gini koeficientu G, šiuo
atveju klaidingai atpažintų epizodų įtaka yra didžiulė.
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4.10 pav. PV profilio atkūrimo vertinimas pagal profilį charakterizuojančius parametrus:
modelio parametrus (β1 ir µ), santykinę bendrą PV trukmę B, agregaciją A ir Gini koeficientą
G. Kiekvienu atveju pateiktas Pirsono koreliacijos koeficientas r. Rezultatai gauti naudojant
SPAFDB, AFDB ir LTAFDB. PV profiliai su mažiau nei 10 epizodų buvo pašalinti iš tyrimo

Šis tyrimas atskleidė, kad, nepaisant aukštų detektoriaus patikimumo įverčių,
PV profilių atkūrimas gali būti nepatikimas. Klaidingai atpažinti epizodai ar neat-
pažinti epizodai pakeičia PV profilį, ir tai atspindi PV profilį charakterizuojančių
parametrų vertės. Tolimesni tyrimai turi atsižvelgti ne tik į detektorių patikimumą,
bet ir į PV profilio atkūrimo patikimumą ir jį charakterizuojančius parametrus.

4.4 Prieširdžių virpėjimo profilio ryšys su echokardiogramos parametrais

Panaudojant PV profilius iš SPAFDB, kurie turi echokardiogramos parametrus, atlik-
tas tyrimas, siekiant įvertinti kairiojo prieširdžio tūrio ir įtempimo ryšį su modelio
parametrais (β1 ir µ), santykine bendra PV trukme B, agregacija A ir Gini koefi-
cientu G. Tyrimo rezultatai, pateikti 4.11 pav., parodė, kad β1, µ ir Gini koeficientas
G yra silpnai koreliuoti su kairiojo prieširdžio tūriu (atitinkamai r � 0,34, r � 0,19,
r � 0,09). O santykinė bendra PV trukmė B ir agregacija A yra vidutiniškai ko-
reliuota su kairiojo prieširdžio tūriu (atitinkamai r � 0,46 ir r � �0,50). Kairiojo
prieširdžio įtempimas yra vidutiniškai koreliuotas su µ ir Gini koeficientu G (atitinka-
mai r � �0,48 ir r � �0,57).

Nors gautiems rezultatams trūksta patikimumo dėl mažos imties, tačiau tyrimas
atskleidžia šios tyrimo krypties svarbą. Prieširdžių struktūrinis pakitimas gali būti
susijęs su PV profilio charakteristikų pokyčiais, dažnai pasireiškiančiais ilgėjančiais
PV epizodais (t. y. didėja µ ir B). Todėl reikia atlikti tolimesnius tyrimus su didesne
duomenų baze, kad būtų patvirtinta PV profilį charakterizuojančių parametrų klinikinė
reikšmė.
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4.11 pav. Kairiojo prieširdžio tūrio ir įtempimo ryšys su modelio parametrais (β1 ir µ),
santykine bendra PV trukme B, agregacija A ir Gini koeficientu G. Kiekvienu atveju pateiktas

Pirsono koreliacijos koeficientas r. Rezultatai gauti naudojant SPAFDB
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IŠVADOS

1. Sukurtas paroksizminių PV epizodų pasiskirstymo laike modelis, kuris atsižvel-
gia į epizodų susigrupavimą į klasterius. Siūlomas modelis yra pagrįstas kin-
tamu dvimačiu Hawkeso procesu ir gali būti naudojamas modeliuojant įvairius
PV profilius. Svarbi modelio savybė yra ta, kad jis gali būti naudojamas iš-
traukiant modelio parametrus iš realių signalų, o šie parametrai gali būti naudo-
jami charakterizuoti PV profiliui, t. y. parametras β1 yra susijęs su PV epizodų
susigrupavimu į klasterius, o parametras µ nurodo širdies ritmo dominavimą
(PV ar sinusinis ritmas).

2. Pasiūlyti trys būdai PV epizodų pasiskirstymui laike charakterizuoti. Skirstinių
analize pagrįstas būdas yra mažiau tinkamas PV profiliams vertinti, nes 51 %
histogramų su epizodų trukmėmis, 66 % su trukmėmis tarp epizodų ir 94 % su
trukmėmis tarp epizodų pradžių nebuvo priskirtos nė vienam iš skirstinių. Mo-
delio parametrai suteikia papildomos informacijos apie PV profilį, koreliacija
tarp santykinės bendros PV trukmės ir β1 bei µ atitinkamai yra �0,16 ir 0,24.
O agregacija yra neigiamai stipriai koreliuota su santykine bendra PV trukme
(r � �0,90). Agregacija labiau tinka charakterizuoti PV profilius su maža
santykine bendra PV trukme (  0,5), o Gini koeficientas, atvirkščiai – naudin-
gas atskiriant PV profilius, turinčius didelę santykinę bendrą PV trukmę. Taigi,
parametrų derinys leidžia analizuoti skirtingus PV profilių tipus (t. y. profilius,
sudarytus iš vieno klasterio, iš kelių klasterių, ir profilius, kuriuose epizodai
pasiskirstę laike).

3. EKG signalo savybės (t. y. EKG morfologija, prieširdžių priešlaikinių susitrau-
kimų skaičius, triukšmo lygis) bei PV profilio savybės (t. y. santykinė ben-
dra PV trukmė ir epizodo trukmė) daro įtaką detektorių patikimumui. Siekiant
charakterizuoti PV profilius, rekomenduojama palyginti gautą profilį iš detekto-
rių su anotuotu profiliu taikant epizodų palyginimo metodą, o detektorių patiki-
mumui įvertinti naudoti Mcc įvertį, o ne Acc ar F1, šalia taip pat pateikti Se, Sp ir
PPV. PV profilių charakterizavimas reikalauja didesnio detektorių patikimumo.
Pavyzdžiui, koreliacija tarp parametrų, gautų iš profilių naudojant detektorius ir
anotuotų profilių, yra 0,14, 0,64, 0,97, 0,89, 0,39 atitinkamai β1, µ, santykinės
bendros PV trukmės, agregacijos ir Gini koeficiento. Taigi, tolimesni tyrimai
turėtų būti sutelkti į PV profilių atkūrimo patikimumą ir jo užtikrinimą.
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V., PETRĖNAS, A., et al. Model-based characterization of atrial fibrillation
episodes and its clinical association. In 2020 Computing in Cardiology (CinC).
2020, 62, 4–9.
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PETRYLAITĖ, M., et al. High specificity wearable device with photoplethys-
mography and six-lead electrocardiography for atrial fibrillation detection chal-
lenged by frequent premature contractions: DoubleCheck-AF. Frontiers in Car-
diovascular Medicine. 2022, 9, 1–11.

33. BOTTO, G. L., TORTORA, G., CASALE, M. C., CANEVESE, F. L., and
BRASCA, F. A. M. Impact of the pattern of atrial fibrillation on stroke risk
and mortality. Arrhythmia and Electrophysiology Review. 2021, 10(2), 68.

34. DESHMUKH, A., BROWN, M. L., HIGGINS, E., SCHOUSEK, B., ABEYRAT-
NE, A., et al. Performance of atrial fibrillation detection in a new single-chamber
ICD. Pacing and Clinical Electrophysiology. 2016, 39(10), 1031–1037.

35. PODD, S. J., SUGIHARA, C., FURNISS, S. S., and SULKE, N. Are implantable
cardiac monitors the ‘gold standard’ for atrial fibrillation detection? A prospec-
tive randomized trial comparing atrial fibrillation monitoring using implantable
cardiac monitors and DDDRP permanent pacemakers in post atrial fibrillation
ablation patients. EP Europace. 2016, 18(7), 1000–1005.

36. CAI, W., CHEN, Y., GUO, J., HAN, B., SHI, Y., et al. Accurate detection of
atrial fibrillation from 12-lead ECG using deep neural network. Computers in
Biology and Medicine. 2020, 116, 103378.

37. SHI, H., WANG, H., QIN, C., ZHAO, L., and LIU, C. An incremental learn-
ing system for atrial fibrillation detection based on transfer learning and active
learning. Computer Methods and Programs in Biomedicine. 2020, 187, 105219.

38. GHOSH, S. K., TRIPATHY, R. K., PATERNINA, M. R. A., ARRIETA, J. J.,
ZAMORA-MENDEZ, A., and NAIK, G. R. Detection of atrial fibrillation from
single lead ECG signal using multirate cosine filter bank and deep neural net-
work. Journal of Medical Systems. 2020, 44(6), 114.

39. ZHANG. H., HE, R., DAI, H., XU, M., and WANG, Z. SS-SWT and SI-CNN:
An atrial fibrillation detection framework for time-frequency ECG signal. Jour-
nal of Healthcare Engineering. 2020, 2020.

40. HUANG, M.-L., and WU, Y.-S. Classification of atrial fibrillation and normal
sinus rhythm based on convolutional neural network. Biomedical Engineering
Letters. 2020, 1–11.

108



41. JIN, Y., QIN, C., HUANG, Y., ZHAO, W., and LIU, C. Multi-domain modeling
of atrial fibrillation detection with twin attentional convolutional long short-term
memory neural networks. Knowledge-Based Systems. 2020, 105460.

42. WANG, J. A deep learning approach for atrial fibrillation signals classification
based on convolutional and modified elman neural network. Future Generation
Computer Systems. 2020, 102, 670–679.

43. FUJITA, H. and CIMR, D. Computer aided detection for fibrillations and flutters
using deep convolutional neural network. Information Sciences. 2019, 486,
231–239.

44. DANG, H., SUN, M., ZHANG, G., QI, X., ZHOU, X., and CHANG, Q. A
novel deep arrhythmia-diagnosis network for atrial fibrillation classification us-
ing electrocardiogram signals. IEEE Access. 2019, 7, 75577–75590.

45. LAI, D., ZHANG, X., BU, Y., SU, Y., and MA, C.-S. An automatic system
for real-time identifying atrial fibrillation by using a lightweight convolutional
neural network. IEEE Access. 2019, 7, 130074–130084.

46. ANDERSEN, R. S., PEIMANKAR, A., and PUTHUSSERYPADY, S. A deep
learning approach for real-time detection of atrial fibrillation. Expert Systems
with Applications. 2019, 115, 465–473.

47. HANNUN, A. Y., RAJPURKAR, P., HAGHPANAHI, M., TISON, G. H., BO-
URN, C., et al. Cardiologist-level arrhythmia detection and classification in
ambulatory electrocardiograms using a deep neural network. Nature Medicine.
2019, 25(1), 65.

48. HE, R., WANG, K., ZHAO, N., LIU, Y., YUAN, Y., et al. Automatic detection
of atrial fibrillation based on continuous wavelet transform and 2D convolutional
neural networks. Frontiers in Physiology. 2018, 9, 1206.

49. FAUST, O., SHENFIELD, A., KAREEM, M., SAN, T. R., FUJITA, H., and
ACHARYA, U. R. Automated detection of atrial fibrillation using long short-
term memory network with RR interval signals. Computers in Biology and
Medicine. 2018, 102, 327–335.

50. XIA, Y., WULAN, N., WANG, K., and ZHANG, H. Detecting atrial fibrillation
by deep convolutional neural networks. Computers in Biology and Medicine.
2018, 93, 84–92.

51. POURBABAEE, B., ROSHTKHARI, M. J., and KHORASANI, K. Deep con-
volutional neural networks and learning ECG features for screening paroxysmal
atrial fibrillation patients. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C. 2018, 48(12), 2095–2104.

109



52. MOUSAVI, S., AFGHAH, F., and ACHARYA, U. R. HAN-ECG: An inter-
pretable atrial fibrillation detection model using hierarchical attention networks.
Computers in Biology and Medicine. 2020, 127, 104057.

53. MARSILI, I. A., BIASIOLLI, L., MASE, M., ADAMI, A., ANDRIGHETTI,
A. O., et al. Implementation and validation of real-time algorithms for atrial
fibrillation detection on a wearable ECG device. Computers in Biology and
Medicine. 2020, 116, 103540.
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56. PETRĖNAS, A., MAROZAS, V., and SÖRNMO, L. Low-complexity detection
of atrial fibrillation in continuous long-term monitoring. Computers in Biology
and Medicine. 2015, 65, 184–191.

57. LADAVICH, S. and GHORAANI, B. Rate-independent detection of atrial fib-
rillation by statistical modeling of atrial activity. Biomedical Signal Processing
and Control. 2015, 18, 274–281.

58. LEE, J., REYES, B. A., MCMANUS, D. D., MAITAS, O., and CHON, K. H.
Atrial fibrillation detection using an iPhone 4S. IEEE Transactions on Biomedi-
cal Engineering. 2013, 60(1), 203–206.

59. JIANG, K., HUANG, C., YE, S.-M., and CHEN, H. High accuracy in auto-
matic detection of atrial fibrillation for Holter monitoring. Journal of Zhejiang
University-SCIENCE B. 2012, 13(9), 751–756.

60. ASGARI, S., MEHRNIA, A., and MOUSSAVI, M. Automatic detection of
atrial fibrillation using stationary wavelet transform and support vector machine.
Computers in Biology and Medicine. 2015, 60, 132–142.

61. LEE, J., NAM, Y., MCMANUS, D. D., and CHON, K. H. Time-varying coher-
ence function for atrial fibrillation detection. IEEE Transactions on Biomedical
Engineering. 2013, 60(10), 2783–2793.

62. LIAN, J., WANG, L., and MUESSIG, D. A simple method to detect atrial fib-
rillation using RR intervals. American Journal of Cardiology. 2011, 107(10),
1494–1497.

110



63. BABAEIZADEH, S., GREGG, R. E., HELFENBEIN, E. D., LINDAUER, J.
M., and ZHOU, S. H. Improvements in atrial fibrillation detection for real-time
monitoring. Journal of Electrocardiology. 2009, 42(6), 522–526.

64. DASH, S., CHON, K., LU, S., and RAEDER, E. Automatic real time detection
of atrial fibrillation. Annals of Biomedical Engineering. 2009, 37(9), 1701–
1709.

65. WASSERLAUF, J., YOU, C., PATEL, R., VALYS, A., ALBERT, D., and PASS-
MAN, R. Smartwatch performance for the detection and quantification of atrial
fibrillation. Circulation: Arrhythmia and Electrophysiology. 2019, 12(6),
e006834.
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68. SOLOŠENKO, A., PETRĖNAS, A., MAROZAS, V., and SÖRNMO, L. Model-
ing of the photoplethysmogram during atrial fibrillation. Computers in Biology
and Medicine. 2017, 81, 130–138.
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1. Butkuvienė, Monika; Petrėnas, Andrius; Sološenko, Andrius; Martín-Yebra,
Alba; Marozas, Vaidotas; Sörnmo, Leif. Considerations on Performance Evalu-
ation of Paroxysmal Atrial Fibrillation Detectors. IEEE Transactions on Biomed-
ical Engineering. 2021, vol. 68, iss. 11, p. 3250–3260. [IF 4.756, Q2, 2021].

2. Henriksson, Mikael; Martín-Yebra, Alba; Butkuvienė, Monika; Rasmussen,
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senos ir charakterizavimo sistema ir būdas / išradėjai: V. Marozas, A. Petrėnas,
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Lukoševičius, V. Marozas; A. Petrėnas, S. Daukantas, M. Butkuvienė, D. Ras-
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